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GLOBAL GRADIENT ESTIMATES FOR NONLINEAR

ELLIPTIC EQUATIONS

Seungjin Ryu

Abstract. We prove global gradient estimates in weighted Orlicz spaces
for weak solutions of nonlinear elliptic equations in divergence form over
a bounded non-smooth domain as a generalization of Calderón-Zygmund
theory. For each point and each small scale, the main assumptions are
that nonlinearity is assumed to have a uniformly small mean oscillation
and that the boundary of the domain is sufficiently flat.

1. Introduction

Let Ω be a bounded domain in R
n, n ≥ 2, with its non-smooth boundary

∂Ω and let F = F (x) : Ω → R
n be a given vector-valued function at least

in L2(Ω,Rn). With these notations, consider the following nonlinear elliptic
equation in divergence form:

(1.1)

{

div a(Du, x) = divF in Ω,

u = 0 on ∂Ω,

where the nonlinearity a = a(ξ, x) : Rn × R
n → R

n is measurable in x for all
ξ ∈ R

n and continuous in ξ for almost all x ∈ R
n. Here assume standard mono-

tonicity and growth conditions on a as follows: For some positive constants c0
and c1,

(1.2)

{

c0|ξ − η|2 ≤ [a(ξ, x) − a(η, x)] · (ξ − η)

|a(ξ, x)| + |ξ||Dξa(ξ, x)| ≤ c1|ξ|

for all ξ, η ∈ R
n and for almost every x ∈ R

n.
As usual, we consider a weak solution u ∈ H1

0 (Ω), which means that the
following integral formula holds:

∫

Ω

a(Du, x) ·Dϕdx =

∫

Ω

F ·Dϕdx, ∀ϕ ∈ H1
0 (Ω).
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The existence and uniqueness of a weak solution to problem (1.1) can be ob-
tained by the Minty-Browder method for monotone operators, see [9, 20], under
the assumption F ∈ L2(Ω,Rn), with the estimate

‖|Du|2‖L1(Ω,Rn) ≤ c ‖|F |2‖L1(Ω,Rn),

the constant c is independent of u and F .
In this paper

Bρ(y) = {x ∈ R
n : |x− y| < ρ}

denotes the open ball on R
n centered y ∈ R

n and radius ρ > 0 and |E| denotes
the n-dimensional Lebesgue measure of a set E ⊂ R

n. With the notation, the
regularity assumption on the nonlinearity a = a(ξ, x) and a finer geometric
assumption on the domain Ω are introduced. First set

θ(a;Bρ(y))(x) = sup
ξ∈Rn\{0}

∣

∣a(ξ, x) − aBρ(y)(ξ)
∣

∣

|ξ|
,

where

aBρ(y)(ξ) =

∫

−
Bρ(y)

a(ξ, x) dx =
1

|Bρ(y)|

∫

Bρ(y)

a(ξ, x) dx

is the integral average of a(ξ, x) in the variable x over Bρ(y) for fixed ξ ∈ R
n.

The function θ(a;Bρ(y)) provides the measurement of the oscillation of a(ξ,x)
|ξ|

in the variable x over Bρ(y), uniformly in ξ.

Definition 1.1. A vector field a is said to be (δ, R)-vanishing if

sup
0<ρ≤R

sup
y∈Rn

∫

−
Bρ(y)

θ(a;Bρ(y))(x) dx ≤ δ.

To measure the deviation of ∂Ω from being an (n − 1)-dimensional affine
space at each scale ρ > 0, use the following so-called “Reifenberg flatness”.

Definition 1.2. A bounded domain Ω is said to be (δ, R)-Reifenberg flat
if for every x ∈ ∂Ω and every ρ ∈ (0, R], there exists a coordinate system
{y1, . . . , yn}, which can depend on ρ and x such that x = 0 in this coordinate
system and that

(1.3) Bρ(0) ∩ {yn > δρ} ⊂ Bρ(0) ∩Ω ⊂ Bρ(0) ∩ {yn > −δρ} .

Remark 1.3. The above definition warrants a few comments. Because the main
problem (1.1) has a scaling invariance property, the constant R can be taken
as 1 or any other constant greater than 1. However, the constant δ is a small
positive constant still invariant under such scaling (see Lemma 2.1). In fact,
the Reifenberg flatness (1.3) is meaningful when 0 < δ < 1

8 , see [25], and with
such small δ, these flatness conditions mean that the deviation of ∂Ω from
being an (n − 1)-dimensional affine space is small enough at each scale ρ > 0.
In addition, by (1.3), the following measure density condition is obtained:

|Ω ∩Bρ(y)| ≥

(

1− δ

2

)n

|Bρ(y)| ≥

(

7

16

)n

|Bρ(y)|
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for all y ∈ Ω and ρ ∈ (0, R).

Here the purpose is to generalize Calderón-Zygmund-type estimates of the
gradient of a weak solution of (1.1) in weighted Orlicz spaces. Because these
Calderón-Zygmund-type estimates play an important role in regularity theory
with Hölder estimates, studies have examined for classical Lp estimates or their
generalizations (e.g., [8, 11, 13, 21, 26]).

From a technical point of view, this paper appropriately applies the ap-
proach introduced in [10] and later developed in [3, 6, 7]. Although the main
tools are the Hardy-Littlewood maximal function and the Calderón-Zygmund-
Krylov-Safonov-type decomposition, the general theory of singular integrals
employed in [15, 22, 24] is not used. Note that this approach is useful even when
considering global estimates with non-smooth boundaries. It should be point
out that one may obtain the same results based on the so-called “Harmonic-
analysis-free” technique in [1]. This approach is quite effective for Lp regularity
estimates for nonlinear parabolic problems with no invariance property under
normalization, see [2, 4, 14]. In addition, note that the so-called “sharp maxi-
mal function method”, first introduced in [18] and later modified in [11, 12, 19],
is useful when differential operators related to problems are bounded and linear.

The Muchenhoupt weight is now introduced. A positive and locally inte-
grable function w on R

n is said to be of class Ap, 1 < p < ∞, if

(1.4) sup

(

1

|B|

∫

B

w(x) dx

)(

1

|B|

∫

B

w(x)
−1
p−1 dx

)p−1

≤ A < ∞,

where the supremum runs over all balls B formed by B = Bρ(y). Note that
the smallest constant A for which (1.4) holds is denoted by [w]p. Given w ∈ Ap

and a measurable set E ⊂ R
n, we use the notation

w(E) =

∫

E

w(x) dx

to denote the w-measure of the set E. On the other hand, there is another way
to define the Ap class: That is, the weight w belongs to Ap if and only if

(1.5)

(

1

|B|

∫

B

f(x)dx

)p

≤
c

w(B)

∫

B

(

f(x)
)p
w(x)dx

holds for all positive functions f and all balls B. The smallest constant c

for which (1.5) is valid equals [w]p. As a direct consequence of (1.5), the Ap

weight has a doubling property (see the first inequality (∗) of (1.6)). First, a
remarkable feature of Ap weights is that they have the reverse Hölder property.
That is, for w ∈ Ap (1 < p < ∞), there exists a small positive constant
ǫ0 depending only on n, p and [w]p such that w ∈ Ap−ǫ0 with the estimate
[w]p−ǫ0 < c[w]p for some c = c(n, p, [w]p) > 0. The unification of the doubling
and reverse Hölder properties produces the following comparability between
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the w-measure and the Lebesgue measure:

(1.6)
1

[w]p

(

|E|

|B|

)p (∗)

≤
w(E)

w(B)
≤ c2

(

|E|

|B|

)τ1

, E ⊂ B,

for some constants c2 > 1 and τ1 ∈ (0, 1). We remark that these c2 and τ1
depend only on n, p, and [w]p and thus not on E and B.

We now turn to Orlicz spaces. The function Φ : [0,∞) → [0,∞) is said to
be a Young function if Φ is increasing, convex, and satisfies

Φ(0) = 0, Φ(∞) = lim
ρ→+∞

Φ(ρ) = +∞, lim
ρ→0+

Φ(ρ)

ρ
= 0, lim

ρ→+∞

Φ(ρ)

ρ
= +∞.

Throughout the paper, the Young function Φ is assumed to satisfy ∆2 and ∇2

conditions, denoted by Φ ∈ ∆2 ∩ ∇2,

• (∆2-condition) there exists µ > 1 such that Φ(2ρ) ≤ µΦ(ρ) for all
ρ > 0;

• (∇2-condition) there exists ν > 1 such that 2νΦ(ρ) ≤ Φ(νρ) for all
ρ > 0.

We next define the lower index of Φ, denoted by i(Φ), by

i(Φ) = lim
λ→0+

log(hΦ(λ))

logλ
= sup

0<λ<1

log(hΦ(λ))

logλ
,

where

hΦ(λ) = sup
ρ>0

Φ(λρ)

Φ(ρ)
(λ > 0).

For example, i(Φ) = q if Φ(ρ) = ρq with q > 1. In addition, this ∆2 ∩ ∇2-
condition ensures that the Young function increases moderately. That is, there
are two constants q0 and q1 with 1 < q0 ≤ q1 < ∞ such that

(1.7)
1

c3
min{λq0 , λq1}Φ(ρ) ≤ Φ(λρ) ≤ c3 max{λq0 , λq1}Φ(ρ), λ, ρ ≥ 0,

where the constant c3 is independent of λ and ρ. In fact, the index number
i(Φ) is equal to the supremum of q0 satisfying (1.7). Finally, we would like to
mention that the ∆2 ∩ ∇2-condition is unavoidable for the type of regularity
considered here, see [27].

The condition w ∈ Ai(Φ) is the main assumption on the Muckenhoupt weight
w(x). Because Φ ∈ ∆2 ∩ ∇2, 1 < i(Φ) < ∞. It is worth summarizing an
important property of the Ai(Φ) weight w considered here. There exists a small
positive constant ǫ0 depending the index i(Φ) and the dimension such that
w ∈ Ai(Φ)−ǫ0 with the estimate [w]i(Φ)−ǫ0 ≤ cn,i(Φ)[w]i(Φ). Consequently,

[w]i(Φ) ≤ [w]i(Φ)−ǫ0 ≤ c[w]i(Φ)

and therefore assume that

(1.8) λi(Φ)−ǫ0Φ(t) ≤ cΦ(λt), λ ≥ 1, t ≥ 0.

We refer to [16, 17] for a more in-depth discussion on the condition w ∈ Ai(Φ).
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We now ready to introduce the weighted Orlicz space considered here. For a
Young function Φ ∈ ∆∩∇2 and a positive and locally integrable function w =
w(x) ∈ Ai(Φ), the weighted Orlicz space LΦ

w(Ω) is the class of all measurable
functions g : Ω → R satisfying

∫

Ω

Φ(|g(x)|)w(x)dx < +∞.

Indeed, the weighted Luxemburg norm,

‖g‖LΦ
w(Ω) = inf

{

κ > 0 :

∫

Ω

Φ

(

|g(x)|

κ

)

w(x) dx ≤ 1

}

,

is well-defined as a norm, up to equal almost everywhere, on LΦ
w(Ω), see [17].

By the convexity of Φ and the estimate (1.7), the following is obtained:

1

c3
min{‖g‖q0

LΦ
w(Ω)

, ‖g‖q1
LΦ

w(Ω)
}(1.9)

≤

∫

Ω

Φ(|g(x)|)w(x)dx ≤ c3 max{‖g‖q0
LΦ

w(Ω), ‖g‖
q1
LΦ

w(Ω)}.

If ‖g‖LΦ
w(Ω) ≤ 1, then it follows from (1.7) that

1

c3

(

1

‖g‖LΦ
w(Ω) + ǫ

)q0 ∫

Ω

Φ(|g(x)|)w(x)dx ≤

∫

Ω

Φ

(

|g(x)|

‖g‖LΦ
w(Ω) + ǫ

)

w(x)dx ≤ 1

and that

1 <

∫

Ω

Φ

(

|g(x)|

‖g‖LΦ
w(Ω) − ǫ

)

w(x)dx ≤ c3

(

1

‖g‖LΦ
w(Ω) − ǫ

)q1 ∫

Ω

Φ(|g(x)|)w(x)dx

for all sufficiently small ǫ > 0. Therefore,

1

c3
‖g‖q1

LΦ
w(Ω)

≤

∫

Ω

Φ(|g(x)|)w(x)dx ≤ c3‖g‖
q0
LΦ

w(Ω)

provided that ‖g‖LΦ
w(Ω) ≤ 1. Similarly, we have

1

c3
‖g‖q0

LΦ
w(Ω)

≤

∫

Ω

Φ(|g(x)|)w(x)dx ≤ c3‖g‖
q1
LΦ

w(Ω)

in the case ‖g‖LΦ
w(Ω) > 1. This finishes the proof for (1.9).

We are now ready to state the main result.

Theorem 1.4. Given a Young function Φ ∈ ∆2 ∩ ∇2, let w ∈ Ai(Φ). Suppose

that |F |2 ∈ LΦ
w(Ω) and u ∈ H1

0 (Ω) is a weak solution of (1.1). Then there exists

a small positive constant δ = δ(c0, c1, n,Φ, w) such that if a is (δ, R)-vanishing
and Ω is (δ, R)-Reifenberg flat, then |Du|2 ∈ LΦ

w(Ω) with the estimate

(1.10) ‖|Du|2‖LΦ
w(Ω) ≤ c ‖|F |2‖LΦ

w(Ω),

the constant c depending on c0, c1, n, R,Φ, w, and Ω.
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We remark that the present result is a natural extension of previous research
[9, 20]. In fact, the problem (1.1) under the same conditions is considered in
unweighted [9] and weighted [20] Lebesgue spaces.

Before ending this section, we check the existence and uniqueness of a weak
solution. The following lemma ensures that for each F (x) with |F |2 ∈ LΦ

w(Ω),
the problem (1.1) has a unique weak solution.

Lemma 1.5. Let Φ ∈ ∆2 ∩ ∇2 and w ∈ Ai(Φ). If |F |2 ∈ LΦ
w(Ω), then |F |2 ∈

L1(Ω), and
(1.11)
∫

Ω

|F (x)|2 dx ≤ c

[

(
∫

Ω

Φ(|F |2)w(x)dx

)
1
q0

+

(
∫

Ω

Φ(|F |2)w(x)dx

)
1
q1

]

,

where q0 and q1 are defined in (1.7).

Proof. We first recall the self-improving property of Ai(Φ)-weight, that is, w ∈

Ai(Φ)−ǫ0 with (1.8). Set f(x) = |F (x)|2. With a direct calculation,
∫

{Ω:|f |≥1}

|f(x)| dx =

∫

{Ω:|f |≥1}

|f(x)|w(x)
1

i(Φ)−ǫ0 w(x)
− 1

i(Φ)−ǫ0 dx

≤

(

∫

{Ω:|f |≥1}

|f(x)|i(Φ)−ǫ0w(x)dx

)
1

i(Φ)−ǫ0

×

(
∫

Ω

w(x)
−1

i(Φ)−ǫ0−1 dx

)

i(Φ)−ǫ0−1

i(Φ)−ǫ0

≤
|Ω|[w]i(Φ)−ǫ0

w(Ω)
1

i(Φ)−ǫ0

(

∫

{Ω:|f |≥1}

|f(x)|i(Φ)−ǫ0w(x)dx

)
1

i(Φ)−ǫ0

.

It follows from (1.8) that

|f(x)|i(Φ)−ǫ0 ≤
c

Φ(1)
Φ(|f(x)|) if |f(x)| ≥ 1,

and so
∫

{Ω:|f |≥1}

|f(x)| dx ≤ c

(
∫

Ω

Φ(|f(x)|)w(x)dx

)
1

i(Φ)−ǫ0

.

On the other hand, it follows from i(Φ) ≤ q1 that w ∈ Aq1 with [w]q1 ≤ [w]i(Φ).
Because, by (1.7),

|f(x)|q1 ≤
c

Φ(1)
Φ(|f(x)|) if |f(x)| ≤ 1,

∫

{Ω:|f |≤1}

|f(x)| dx ≤ c

(
∫

Ω

Φ(|f(x)|)w(x)dx

)
1
q1

.
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Since ǫ0 is small enough, we get
∫

Ω

|f(x)| dx ≤ c

[

(
∫

Ω

Φ(|f(x)|)w(x)dx

)
1
q0

+

(
∫

Ω

Φ(|f(x)|)w(x)dx

)
1
q1

]

.

�

2. Preliminary tools

We begin this section with the following invariance property under normal-
ization and scaling. The proof follows by direct computations (for further
details, see [9]).

Lemma 2.1. Let u be a weak solution to the problem (1.1). Assume that the

nonlinearity a(ξ, x) satisfies (1.2) and is (δ, R)-vanishing. For each λ > 1 and

0 < r < 1, define the rescaled maps

ã(ξ, x) =
a(λξ, rx)

λ
, Ω̃ =

{

1

r
x : x ∈ Ω

}

, ũ(x) =
u(rx)

λr
, F̃ (x) =

F (rx)

λ
.

Then

(1) ũ ∈ H1
0 (Ω̃) is the weak solution of

div ã(Dũ, x) = div F̃ in Ω̃,

(2) ã(ξ, x) satisfies the structural assumption (1.2) with the same constants

c0 and c1,

(3) ã is (δ, R
r
)-vanishing and Ω̃ is (δ, R

r
)-Reifenberg flat.

We now recall the Hardy-Littlewood maximal function and its basic proper-
ties. Let g be a locally integrable function on R

n. Then the Hardy-Littlewood
maximal function is given by

(Mg)(x) = sup
ρ>0

∫

−
Bρ(x)

|g(y)| dy = sup
ρ>0

1

|Bρ(x)|

∫

Bρ(x)

|g(y)| dy.

If g is defined only on a bounded subset of Rn, then we define as

Mg = Mg,

where g is the zero extension of g in R
n. This maximal function holds the so-

called weak (1, 1) inequality. More specifically, there exists a positive constant
c = c(n) such that

(2.1)
∣

∣{x ∈ R
n : (Mg)(x) > λ}

∣

∣ ≤
c

λ

∫

Rn

|g(x)| dx

for any λ > 0. As the well-known Muchenhoupt characterization of the Ap-
weight, the Hardy-Littlewood maximal operator is bounded from weighted
Lebesgue space Lp

w(R
n) to itself and the Ai(Φ)-weight can be classified as fol-

lows: Given a Young function Φ ∈ ∆2 ∩∇2, the weight w belongs to the Ai(Φ)

class if and only if there exists c = c(n,Φ, w) such that

(2.2)

∫

Rn

Φ
(

Mg(x)
)

w(x)dx ≤ c

∫

Rn

Φ
(

|g(x)|
)

w(x) dx
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for all g ∈ LΦ
w(R

n) with compact support in R
n. We refer to [16, 17] and the

references given therein.
The following measure theory in the weighted Orlicz space is needed:

Lemma 2.2. Given a Young function Φ ∈ ∆2 ∩ ∇2, let w ∈ Ai(Φ). Assume

that g is a nonnegative and measurable function defined on a bounded domain

Ω in R
n. Let θ > 0 and λ > 1 be constants. Then

g ∈ LΦ
w(Ω) ⇐⇒ S =

∑

k≥1

Φ
(

λk
)

w
(

{

x ∈ Ω : g(x) > θλk
}

)

< ∞

and

(2.3)
1

c
S ≤

∫

Ω

Φ
(

g(x)
)

w(x) dx ≤ c(w(Ω) + S),

the positive constant c depending only on θ, λ, Φ, and w.

The following version of the Calderon-Zygmund-Krylov-Safonov-type cover-
ing lemma is used to prove the main theorem. The following lemma can be
found in [5, Lemma 5.4] or [23, Lemma 3.4] with slight modifications.

Lemma 2.3. Given a Young function Φ ∈ ∆2 ∩∇2, let w ∈ Ai(Φ). Let Ω be a

bounded (δ, 1)-Reifenberg flat domain for some small δ > 0 and let C and D be

measurable sets with C ⊂ D ⊂ Ω. Suppose that there exists small ǫ > 0 such

that

(1) for any y ∈ Ω, w(C ∩B1(y)) < ǫw(B1(y)),
(2) for each y ∈ Ω and r ∈ (0, 1),

if w(C ∩Br(y)) ≥ ǫw(Br(y)), then Br(y) ∩Ω ⊂ D.

Then

w(C) ≤ c4 ǫ w(D),

the constant c4 depending only on n,Φ, w, and the constant 1
1−δ

.

3. Global W 1,p estimates

In this section, we will complete the proof of Theorem 1.4. The following
lemma is based on the same method as in the proof in [20, Theorem 4.10].

Lemma 3.1. Let u ∈ H1
0 (Ω) be the weak solution of (1.1). Then there exists

a constant N = N(c0, c1, n) > 1 such that for each 0 < ǫ < 1 fixed, one can

select small δ = δ(ǫ, c0, c1, n,Φ, w) ∈ (0, 1
8 ) such that if a is (δ, 1)-vanishing, Ω

is (δ, 1)-Reifenberg flat, and if for 0 < r < 1 and y ∈ Ω, Br(y) satisfies

w
({

x ∈ Ω : M(|Du|2) > N2
}

∩Br(y)
)

≥ ǫw(Br(y)),

then we have

Br(y) ∩ Ω ⊂
{

x ∈ Ω : M(|Du|2) > 1
}

∪
{

x ∈ Ω : M(|F |2) > δ2
}

.
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We remark that there are similar technical lemmas in the unweighted case
for higher order linear problems, see [7, 11, 13].

From now on, for simplicity and clearance the symbol c denotes a constant
that can be explicitly calculated in terms of known quantities. This constant
may vary in different occurrences.

Now, we are ready to prove the main theorem.

Proof of Theorem 1.4. Thanks to Lemma 2.1, it suffices to prove that

(3.1) ‖|Du|2‖LΦ
w(Ω) ≤ c, under the assumption ‖|F |2‖LΦ

w(Ω) ≤ δ2.

In fact, taking

u1 =
δu

√

‖|F |2‖LΦ
w(Ω) + σ

and F1 =
δF

√

‖|F |2‖LΦ
w(Ω) + σ

in place of u and F , respectively, in the problem (1.1), it follows from (1.11)
and (1.9) that

(3.2) ‖|F1|
2‖LΦ

w(Ω) ≤ δ2 and

∫

Ω

|F1(x)|
2 dx ≤ cδ2τ2 ,

where τ2 = q0
q1
. Therefore if (3.1) is obtained with Du1 instead of Du, then the

proof is completed after letting σ → 0. However, in view of (1.9) and (2.2),

‖|Du|2‖αLΦ
w(Ω) ≤ c

∫

Ω

Φ
(

|Du|2
)

w(x)dx ≤ c

∫

Ω

Φ
(

M(|Du|2)
)

w(x)dx

for some α > 0. Consequently, it suffices to show that, by Lemma 2.2,

S =
∑

k≥1

Φ
(

N2k
)

w
({

x ∈ Ω : M(|Du|2) > N2k
})

< ∞.

We now turn to derive the power decay estimates of the weighted measure
of the upper-level set {x ∈ Ω : M(|Du|2) > N2k} for k = 1, 2, 3, . . .. To apply
Lemma 2.3, first fix ǫ and take δ and N as given in Lemma 3.1. Then define
the sets

{

C = {x ∈ Ω : M(|Du|2) > N2},

D = {x ∈ Ω : M(|Du|2) > 1} ∪ {x ∈ Ω : M(|F |2) > δ2}.

Next check its hypotheses. Clearly, C ⊂ D ⊂ Ω, and for each y ∈ Ω,

w(C ∩B1(y))

w(B1(y))

(1.6)

≤ c2

(

|C ∩B1(y)|

|B1(y)|

)τ1

≤ c |C|τ1

(2.1)

≤ c

(
∫

Ω

|Du|2 dx

)τ1

≤ c

(
∫

Ω

|F |2 dx

)τ1 (3.2)

≤ cδ2τ1τ2 < ǫ
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for δ small enough. Because the second condition of Lemma 2.3 is already
checked in Lemma 3.1,

(3.3)

w
(

{x ∈ Ω : M(|Du|2) > N2k}
)

≤ c4 ǫ w
(

{x ∈ Ω : M(|Du|2) > 1}
)

+ c4 ǫ w
(

{

x ∈ Ω : M(|F |2) > δ2N2(k−i)
}

)

.

On the other hand, the main problem (1.1) has the invariance property from
normalization (see Lemma 2.1) and therefore the same result (3.3) may be
obtained for ( u

N
, F
N
), ( u

N2 ,
F
N2 ), (

u
N3 ,

F
N3 ), . . ., inductively. From this iteration

argument (for further details see, [20, Corollary 4.11]), the following power
decay estimates are obtained:

(3.4)

w
(

{x ∈ Ω : M(|Du|2) > N2k}
)

≤ ǫk1w
(

{x ∈ Ω : M(|Du|2) > 1}
)

+

k
∑

i=1

ǫi1w
(

{

x ∈ Ω : M(|F |2) > δ2N2(k−i)
}

)

for k = 1, 2, . . ., where ǫ1 = c4ǫ. Then a direct computation yields

S =
∑

k≥1

Φ(N2k)w
({

x ∈ Ω : M(|Du|2) > N2k
})

≤
∑

k≥1

Φ(N2k)ǫk1w
({

x ∈ Ω : M(|Du|2) > 1
})

+
∑

k≥1

Φ(N2k)

k
∑

i=1

ǫi1w
({

x ∈ Ω : M(|F |2) > δ2N2(k−i)
})

=: S1 + S2.

Recall the following property of Φ ∈ ∆2: There exists a constant µ1, depending
only on Φ and N such that Φ(N2) ≤ µ1Φ(1), and therefore

Φ(N2k) ≤ µk
1Φ(1), k = 1, 2, 3, . . . .

S1 is estimated as follows:

S1 ≤
∑

k≥1

(

Φ(1)µk
1ǫ

k
1w(Ω)

)

≤ c
∑

k≥1

(µ1ǫ1)
k
.

On the other hand,

S2 =
∑

k≥1

Φ(N2(k−i)N2i)
k
∑

i=1

ǫi1w
({

x ∈ Ω : M(|F |2) > δ2N2(k−i)
})

≤
∑

i≥1

∑

k≥i

Φ(N2(k−i))µi
1ǫ

i
1w
({

x ∈ Ω : M(|F |2) > δ2N2(k−i)
})
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≤ c
∑

i≥1

(µ1ǫ1)
i
∑

k≥i

Φ(N2(k−i))w
({

x ∈ Ω : M(|F |2) > δ2N2(k−i)
})

≤ c
∑

i≥1

(µ1ǫ1)
i
∑

j≥0

Φ(N2j)w

({

x ∈ Ω : M

(

∣

∣

∣

∣

F

δ

∣

∣

∣

∣

2
)

> N2j

})

(2.3)

≤ c
∑

i≥1

(µ1ǫ1)
i

∫

Ω

Φ

(

M

(

∣

∣

∣

∣

F

δ

∣

∣

∣

∣

2
))

w(x)dx

(2.2), (1.9)

≤ c
∑

i≥1

(µ1ǫ1)
i

∥

∥

∥

∥

|F |2

δ2

∥

∥

∥

∥

q0

LΦ
w(Ω)

(3.1)

≤ c
∑

i≥1

(µ1ǫ1)
i
.

Therefore,

S ≤ c
∑

k≥1

(µ1ǫ1)
k

where ǫ1 = c4ǫ, as in Lemma 2.3.
First take sufficiently small ǫ > 0 to get

µ1ǫ1 < 1.

Then one can select correspondingly small δ = δ(c0, c1, n,Φ, w) > 0 from
Lemma 3.1. This completes the proof. �
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