Fuzzy pairwise (r, s)-irresolute mappings

Seung On Lee¹ and Eun Pyo Lee²

¹ Department of Mathematics, Chungbuk National University, Cheongju 361-763, Korea
 ² Department of Mathematics, Seonam University, Namwon 590-711, Korea

Abstract

In this paper, we introduce the concepts of fuzzy pairwise (r, s)-irresolute, fuzzy pairwise (r, s)-presemiopen and fuzzy pairwise (r, s)-presemiclosed mappings in smooth bitopological spaces and then we investigate some of their characteristic properties.

Key words : $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-semiopen sets, fuzzy pairwise (r, s)-irresolute mappings

1. Introduction

After the introduction of fuzzy sets by Zadeh [10], Chang [2] was the first to introduce the concept of a fuzzy topology on a set X by axiomatizing a collection T of fuzzy subsets of X, where he referred to each member of T as an open set. In his definition of fuzzy topology, fuzziness in the concept of openness of a fuzzy subset was absent. These spaces and its generalizations are later studied by several authors, one of which, developed by Šostak [9], used the idea of degree of openness. This type of generalization of fuzzy topological spaces was later rephrased by Chattopadhyay, Hazra, and Samanta [3], and by Ramadan [7]. Kandil [4] introduced and studied the notion of fuzzy bitopological spaces as a natural generalization of fuzzy topological spaces. Lee [5] introduced the concept of smooth bitopological spaces as a generalization of smooth topological spaces and Kandil's fuzzy bitopological spaces.

In this paper, we introduce the concepts of fuzzy pairwise (r, s)-irresolute, fuzzy pairwise (r, s)-presemiopen and fuzzy pairwise (r, s)-presemiclosed mappings in smooth bitopological spaces and then we investigate some of their characteristic properties.

2. Preliminaries

Let *I* be the closed unit interval [0,1] of the real line and let I_0 be the half open interval (0,1] of the real line. For a set *X*, I^X denotes the collection of all mapping from *X* to *I*. A member μ of I^X is called a fuzzy set of *X*. By $\tilde{0}$ and $\tilde{1}$ we denote constant mappings on *X* with value 0 and 1, respectively. For any $\mu \in I^X$, μ^c denotes the complement $\tilde{1} - \mu$. All other notations are the standard notations of fuzzy set theory.

A Chang's fuzzy topology on X [2] is a family T of fuzzy sets in X which satisfies the following properties:

- (1) $\tilde{0}, \tilde{1} \in T$.
- (2) If $\mu_1, \mu_2 \in T$ then $\mu_1 \wedge \mu_2 \in T$.
- (3) If $\mu_k \in T$ for all k, then $\bigvee \mu_k \in T$.

The pair (X,T) be called a *Chang's fuzzy topological space*. Members of T are called T-fuzzy open sets of X and their complements T-fuzzy closed sets of X.

A system (X, T_1, T_2) consisting of a set X with two Chang's fuzzy topologies T_1 and T_2 on X is called a *Kandil's fuzzy bitopological space*.

A smooth topology on X is a mapping $\mathcal{T} : I^X \to I$ which satisfies the following properties:

- (1) $T(\tilde{0}) = T(\tilde{1}) = 1.$
- (2) $\mathcal{T}(\mu_1 \wedge \mu_2) \geq \mathcal{T}(\mu_1) \wedge \mathcal{T}(\mu_2).$
- (3) $\mathcal{T}(\bigvee \mu_i) \ge \bigwedge \mathcal{T}(\mu_i).$

The pair (X, \mathcal{T}) is called a *smooth topological space*. For $r \in I_0$, we call μ a \mathcal{T} -fuzzy r-open set of X if $\mathcal{T}(\mu) \ge r$ and μ a \mathcal{T} -fuzzy r-closed set of X if $\mathcal{T}(\mu^c) \ge r$.

A system $(X, \mathcal{T}_1, \mathcal{T}_2)$ consisting of a set X with two smooth topologies \mathcal{T}_1 and \mathcal{T}_2 on X is called a *smooth bitopological space*. Throughout this paper the indices i, jtake values in $\{1, 2\}$ and $i \neq j$.

Let (X, \mathcal{T}) be a smooth topological space. Then it is easy to see that for each $r \in I_0$, an *r*-cut

$$\mathcal{T}_r = \{ \mu \in I^X \mid \mathcal{T}(\mu) \ge r \}$$

is a Chang's fuzzy topology on X.

Manuscript received Mar. 11. 2009; revised May. 7. 2009. This work was supported by the research grant of the Chungbuk National University in 2008.

Let (X,T) be a Chang's fuzzy topological space and $r \in I_0$. Then the mapping $T^r: I^X \to I$ is defined by

$$T^{r}(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ r & \text{if } \mu \in T - \{\tilde{0}, \tilde{1}\}, \\ 0 & \text{otherwise} \end{cases}$$

becomes a smooth topology.

Hence, we obtain that if $(X, \mathcal{T}_1, \mathcal{T}_2)$ is a smooth bitopological space and $r, s \in I_0$, then $(X, (\mathcal{T}_1)_r, (\mathcal{T}_2)_s)$ is a Kandil's fuzzy bitopological space. Also, if (X, T_1, T_2) is a Kandil's fuzzy bitopological space and $r, s \in I_0$, then $(X, (T_1)^r, (T_2)^s)$ is a smooth bitopological space.

Definition 2.1. [5] Let (X, \mathcal{T}) be a smooth topological space. For each $r \in I_0$ and for each $\mu \in I^X$, the \mathcal{T} -fuzzy *r*-closure is defined by

$$\mathcal{T}\text{-}\mathrm{Cl}(\mu,r) = \bigwedge \{ \rho \in I^X \mid \mu \leq \rho, \mathcal{T}(\rho^c) \geq r \}$$

and the T-fuzzy r-interior is defined by

$$\mathcal{T}\text{-Int}(\mu, r) = \bigvee \{ \rho \in I^X \mid \mu \ge \rho, \mathcal{T}(\rho) \ge r \}.$$

Lemma 2.2. [5] Let μ be a fuzzy set of a smooth topological space (X, \mathcal{T}) and let $r \in I_0$. Then we have:

(1)
$$\mathcal{T}$$
-Cl $(\mu, r)^c = \mathcal{T}$ -Int (μ^c, r)

(2)
$$\mathcal{T}$$
-Int $(\mu, r)^c = \mathcal{T}$ -Cl (μ^c, r) .

Definition 2.3. [5] Let μ be a fuzzy set of a smooth bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $r, s \in I_0$. Then μ is said to be

- (1) a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-semiopen set if there is a \mathcal{T}_i -fuzzy r-open set ρ in X such that $\rho \leq \mu \leq \mathcal{T}_j$ -Cl (ρ, s) ,
- (2) a (T_i, T_j)-fuzzy (r, s)-semiclosed set if there is a T_i-fuzzy r-closed set ρ in X such that T_j-Int(ρ, s) ≤ μ ≤ ρ.

Definition 2.4. [5] Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a smooth bitopological space. For each $r, s \in I_0$ and for each $\mu \in I^X$, the $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-semiclosure is defined by

$$\begin{aligned} (\mathcal{T}_i, \mathcal{T}_j)\text{-sCl}(\mu, r, s) &= \bigwedge \{\rho \in I^X \mid \mu \le \rho, \\ \rho \text{ is } (\mathcal{T}_i, \mathcal{T}_j)\text{-fuzzy } (r, s)\text{-semiclosed} \} \end{aligned}$$

and the (T_i, T_j) -fuzzy (r, s)-semiinterior is defined by

$$\begin{split} (\mathcal{T}_i,\mathcal{T}_j)\text{-}\mathrm{sInt}(\mu,r,s) &= \bigvee \{\rho \in I^X \mid \mu \geq \rho, \\ \rho \ \text{ is } (\mathcal{T}_i,\mathcal{T}_j)\text{-}\mathrm{fuzzy } (r,s)\text{-}\mathrm{semiopen} \} \end{split}$$

Lemma 2.5. [5] Let μ be a fuzzy set of a smooth bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ and let $r, s \in I_0$. Then we have:

(1) $(\mathcal{T}_i, \mathcal{T}_j)$ -sCl $(\mu, r, s)^c = (\mathcal{T}_i, \mathcal{T}_j)$ -sInt (μ^c, r, s) .

(2)
$$(\mathcal{T}_i, \mathcal{T}_j)$$
-sInt $(\mu, r, s)^c = (\mathcal{T}_i, \mathcal{T}_j)$ -sCl (μ^c, r, s) .

Definition 2.6. [5] Let $f : (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a mapping from a smooth bitopological space X to a smooth bitopological space Y and $r, s \in I_0$. Then f is said to be

- (1) a *fuzzy pairwise* (r, s)-*continuous* mapping if the induced mapping $f : (X, \mathcal{T}_1) \to (Y, \mathcal{U}_1)$ is a fuzzy *r*-continuous mapping and the induced mapping $f : (X, \mathcal{T}_2) \to (Y, \mathcal{U}_2)$ is a fuzzy *s*-continuous mapping,
- (2) a *fuzzy pairwise* (r, s)-semicontinuous mapping if f⁻¹(μ) is a (T₁, T₂)-fuzzy (r, s)-semiopen set of X for each U₁-fuzzy r-open set μ of Y and f⁻¹(ν) is a (T₂, T₁)-fuzzy (s, r)-semiopen set of X for each U₂-fuzzy s-open set ν of Y,
- (3) a fuzzy pairwise (r, s)-precontinuous mapping if f⁻¹(μ) is a (T₁, T₂)-fuzzy (r, s)-preopen set of X for each U₁-fuzzy r-open set μ of Y and f⁻¹(ν) is a (T₂, T₁)-fuzzy (s, r)-preopen set of X for each U₂fuzzy s-open set ν of Y.

3. Fuzzy pairwise (r, s)-irresolute, fuzzy pairwise (r, s)-presemiopen and fuzzy pairwise (r, s)-presemiclosed mappings

Definition 3.1. Let $f : (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a mapping from a smooth bitopological space X to a smooth bitopological space Y and $r, s \in I_0$. Then f is called

- (1) fuzzy pairwise (r, s)-irresolute if $f^{-1}(\mu)$ is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-semiopen set of X for each $(\mathcal{U}_i, \mathcal{U}_j)$ -fuzzy (r, s)-semiopen set μ of Y,
- (2) fuzzy pairwise (r, s)-presemiopen if f(ρ) is a (U_i, U_j)-fuzzy (r, s)-semiopen set of Y for each (T_i, T_j)-fuzzy (r, s)-semiopen set ρ of X,
- (3) fuzzy pairwise (r, s)-presemiclosed if f(ρ) is a (U_i, U_j)-fuzzy (r, s)-semiclosed set of Y for each (T_i, T_j)-fuzzy (r, s)-semiclosed set ρ of X.

Theorem 3.2. Let $f : (X, \mathcal{T}_1, \mathcal{T}_2) \rightarrow (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a mapping and $r, s \in I_0$. Then the following statements are equivalent:

- (1) f is a fuzzy pairwise (r, s)-irresolute mapping.
- (2) f⁻¹(μ) is a (T_i, T_j)-fuzzy (r, s)-semiclosed set of X for each (U_i, U_j)-fuzzy (r, s)-semiclosed set μ of Y.
- (3) For each fuzzy set ρ of X,

$$f((\mathcal{T}_i, \mathcal{T}_j) \text{-sCl}(\rho, r, s)) \\ \leq (\mathcal{U}_i, \mathcal{U}_j) \text{-sCl}(f(\rho), r, s)$$

(4) For each fuzzy set μ of Y,

$$\begin{aligned} (\mathcal{T}_i, \mathcal{T}_j) &- \mathrm{sCl}(f^{-1}(\mu), r, s) \\ &\leq f^{-1}((\mathcal{U}_i, \mathcal{U}_j) - \mathrm{sCl}(\mu, r, s)). \end{aligned}$$

(5) For each fuzzy set μ of Y,

$$\begin{split} f^{-1}((\mathcal{U}_i,\mathcal{U}_j)\text{-sInt}(\mu,r,s)) \\ &\leq (\mathcal{T}_i,\mathcal{T}_j)\text{-sInt}(f^{-1}(\mu),r,s). \end{split}$$

Proof. (1) \Rightarrow (2) Let μ be any $(\mathcal{U}_i, \mathcal{U}_j)$ -fuzzy (r, s)-semiclosed set of Y. Then μ^c is a $(\mathcal{U}_i, \mathcal{U}_j)$ -fuzzy (r, s)-semiopen set of Y. Since f is a fuzzy pairwise (r, s)-irresolute mapping, $f^{-1}(\mu^c)$ is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-semiopen set of X. Thus $f^{-1}(\mu)$ is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-semiclosed set of X.

(2) \Rightarrow (3) Let ρ be any fuzzy set of X. Then $(\mathcal{U}_i, \mathcal{U}_j)$ -sCl $(f(\rho), r, s)$ is a $(\mathcal{U}_i, \mathcal{U}_j)$ -fuzzy (r, s)-semiclosed set of Y. By (2), $f^{-1}((\mathcal{U}_i, \mathcal{U}_j)$ -sCl $(f(\rho), r, s))$ is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-semiclosed set of X. Since $f(\rho) \leq (\mathcal{U}_i, \mathcal{U}_j)$ -sCl $(f(\rho), r, s)$, we have

$$\begin{split} & (\mathcal{T}_i, \mathcal{T}_j)\text{-s}\mathrm{Cl}(\rho, r, s) \\ & \leq (\mathcal{T}_i, \mathcal{T}_j)\text{-s}\mathrm{Cl}(f^{-1}f(\rho), r, s) \\ & \leq (\mathcal{T}_i, \mathcal{T}_j)\text{-s}\mathrm{Cl}(f^{-1}((\mathcal{U}_i, \mathcal{U}_j)\text{-s}\mathrm{Cl}(f(\rho), r, s)), r, s) \\ & = f^{-1}((\mathcal{U}_i, \mathcal{U}_j)\text{-s}\mathrm{Cl}(f(\rho), r, s)). \end{split}$$

Hence

$$f((\mathcal{T}_i, \mathcal{T}_j)\operatorname{-sCl}(\rho, r, s))$$

$$\leq ff^{-1}((\mathcal{U}_i, \mathcal{U}_j)\operatorname{-sCl}(f(\rho), r, s))$$

$$\leq (\mathcal{U}_i, \mathcal{U}_j)\operatorname{-sCl}(f(\rho), r, s).$$

(3) \Rightarrow (4) Let μ be any fuzzy set of Y. By (3),

$$f((\mathcal{T}_i, \mathcal{T}_j) \operatorname{-sCl}(f^{-1}(\mu), r, s))$$

$$\leq (\mathcal{U}_i, \mathcal{U}_j) \operatorname{-sCl}(ff^{-1}(\mu), r, s)$$

$$\leq (\mathcal{U}_i, \mathcal{U}_j) \operatorname{-sCl}(\mu, r, s).$$

Thus

$$\begin{aligned} \mathcal{T}_{i}, \mathcal{T}_{j}) &- \mathrm{sCl}(f^{-1}(\mu), r, s) \\ &\leq f^{-1}f((\mathcal{T}_{i}, \mathcal{T}_{j}) - \mathrm{sCl}(f^{-1}(\mu), r, s)) \\ &\leq f^{-1}((\mathcal{U}_{i}, \mathcal{U}_{j}) - \mathrm{sCl}(\mu, r, s)). \end{aligned}$$

(4) \Rightarrow (5) Let μ be any fuzzy set of Y. Then μ^c is a fuzzy set of Y. By (4),

$$(\mathcal{T}_i, \mathcal{T}_j) \operatorname{sCl}(f^{-1}(\mu)^c, r, s)$$

= $(\mathcal{T}_i, \mathcal{T}_j) \operatorname{sCl}(f^{-1}(\mu^c), r, s)$
 $\leq f^{-1}((\mathcal{U}_i, \mathcal{U}_j) \operatorname{sCl}(\mu^c, r, s))$

By Lemma 2.5,

$$\begin{aligned} f^{-1}((\mathcal{U}_i,\mathcal{U}_j)\text{-}\mathrm{sInt}(\mu,r,s)) \\ &= f^{-1}((\mathcal{U}_i,\mathcal{U}_j)\text{-}\mathrm{sCl}(\mu^c,r,s))^c \\ &\leq (\mathcal{T}_i,\mathcal{T}_j)\text{-}\mathrm{sCl}(f^{-1}(\mu^c),r,s)^c \\ &= (\mathcal{T}_i,\mathcal{T}_j)\text{-}\mathrm{sInt}(f^{-1}(\mu),r,s). \end{aligned}$$

 $(5) \Rightarrow (1)$ Let μ be any $(\mathcal{U}_i, \mathcal{U}_j)$ -fuzzy (r, s)-semiopen set of Y. Then $(\mathcal{U}_i, \mathcal{U}_j)$ -sInt $(\mu, r, s) = \mu$. By (5),

$$f^{-1}(\mu) = f^{-1}((\mathcal{U}_i, \mathcal{U}_j) \operatorname{-sInt}(\mu, r, s))$$

$$\leq (\mathcal{T}_i, \mathcal{T}_j) \operatorname{-sInt}(f^{-1}(\mu), r, s)$$

$$\leq f^{-1}(\mu).$$

So $f^{-1}(\mu) = (\mathcal{T}_i, \mathcal{T}_j)$ -sInt $(f^{-1}(\mu), r, s)$ and hence $f^{-1}(\mu)$ is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-semiopen set of X. Thus f is a fuzzy pairwise (r, s)-irresolute mapping. \Box

Theorem 3.3. Let $f : (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a bijection and $r, s \in I_0$. Then f is a fuzzy pairwise (r, s)-irresolute mapping if and only if $(\mathcal{U}_i, \mathcal{U}_j)$ -sInt $(f(\rho), r, s) \leq f((\mathcal{T}_i, \mathcal{T}_j)$ -sInt $(\rho, r, s))$ for each fuzzy set ρ of X.

Proof. Let f be a fuzzy pairwise (r, s)-irresolute mapping and ρ any fuzzy set of X. Since $(\mathcal{U}_i, \mathcal{U}_j)$ -sInt $(f(\rho), r, s)$ is a $(\mathcal{U}_i, \mathcal{U}_j)$ -fuzzy (r, s)-semiopen set of Y, we have $f^{-1}((\mathcal{U}_i, \mathcal{U}_j)$ -sInt $(f(\rho), r, s))$ is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)semiopen set of X. Since f is fuzzy pairwise (r, s)irresolute and one-to-one, we have

$$f^{-1}((\mathcal{U}_i, \mathcal{U}_j) \text{-} \text{sInt}(f(\rho), r, s))$$

$$\leq (\mathcal{T}_i, \mathcal{T}_j) \text{-} \text{sInt}(f^{-1}f(\rho), r, s)$$

$$= (\mathcal{T}_i, \mathcal{T}_j) \text{-} \text{sInt}(\rho, r, s).$$

Since f is onto,

$$\begin{aligned} & (\mathcal{U}_i, \mathcal{U}_j)\text{-sInt}(f(\rho), r, s) \\ &= ff^{-1}((\mathcal{U}_i, \mathcal{U}_j)\text{-sInt}(f(\rho), r, s)) \\ &\leq f((\mathcal{T}_i, \mathcal{T}_j)\text{-sInt}(\rho, r, s)). \end{aligned}$$

Conversely, let μ be any $(\mathcal{U}_i, \mathcal{U}_j)$ -fuzzy (r, s)-semiopen set of Y. Then $(\mathcal{U}_i, \mathcal{U}_j)$ -sInt $(\mu, r, s) = \mu$. Since f is onto,

$$\begin{aligned} f((\mathcal{T}_i, \mathcal{T}_j) \text{-sInt}(f^{-1}(\mu), r, s)) \\ &\geq (\mathcal{U}_i, \mathcal{U}_j) \text{-sInt}(ff^{-1}(\mu), r, s) \\ &= (\mathcal{U}_i, \mathcal{U}_j) \text{-sInt}(\mu, r, s) = \mu. \end{aligned}$$

Since f is one-to-one, we have

$$\begin{aligned} f^{-1}(\mu) &\leq f^{-1}f((\mathcal{T}_i, \mathcal{T}_j)\text{-}\mathsf{sInt}(f^{-1}(\mu), r, s)) \\ &= (\mathcal{T}_i, \mathcal{T}_j)\text{-}\mathsf{sInt}(f^{-1}(\mu), r, s) \\ &\leq f^{-1}(\mu). \end{aligned}$$

Thus $f^{-1}(\mu) = (\mathcal{T}_i, \mathcal{T}_j)$ -sInt $(f^{-1}(\mu), r, s)$ and hence $f^{-1}(\mu)$ is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-semiopen set of X. Therefore f is a fuzzy pairwise (r, s)-irresolute mapping. \Box

Theorem 3.4. Let $f : (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a mapping and $r, s \in I_0$. Then the following statements are equivalent:

International Journal of Fuzzy Logic and Intelligent Systems, vol. 9, no. 2, June 2009

- (1) f is a fuzzy pairwise (r, s)-presemiopen mapping.
- (2) For each fuzzy set ρ of X,

$$f((\mathcal{T}_i, \mathcal{T}_j) \text{-} \text{sInt}(\rho, r, s)) \\ \leq (\mathcal{U}_i, \mathcal{U}_j) \text{-} \text{sInt}(f(\rho), r, s)$$

(3) For each fuzzy set μ of Y,

$$(\mathcal{T}_i, \mathcal{T}_j) \text{-sInt}(f^{-1}(\mu), r, s)$$

 $\leq f^{-1}((\mathcal{U}_i, \mathcal{U}_j) \text{-sInt}(\mu, r, s))$

Proof. (1) \Rightarrow (2) Let ρ be any fuzzy set of X. Clearly $(\mathcal{T}_i, \mathcal{T}_j)$ -sInt (ρ, r, s) is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-semiopen set of X. Since f is a fuzzy pairwise (r, s)-presemiopen mapping, $f((\mathcal{T}_i, \mathcal{T}_j)$ -sInt $(\rho, r, s))$ is a $(\mathcal{U}_i, \mathcal{U}_j)$ -fuzzy (r, s)-semiopen set of Y. Thus

$$f((\mathcal{T}_i, \mathcal{T}_j) - \operatorname{sInt}(\rho, r, s)) = (\mathcal{U}_i, \mathcal{U}_j) - \operatorname{sInt}(f((\mathcal{T}_i, \mathcal{T}_j) - \operatorname{sInt}(\rho, r, s)), r, s) \leq (\mathcal{U}_i, \mathcal{U}_j) - \operatorname{sInt}(f(\rho), r, s).$$

(2) \Rightarrow (3) Let μ be any fuzzy set of Y. Then $f^{-1}(\mu)$ is a fuzzy set of X. By (2),

$$f((\mathcal{T}_i, \mathcal{T}_j) \text{-} \operatorname{sInt}(f^{-1}(\mu), r, s))$$

$$\leq (\mathcal{U}_i, \mathcal{U}_j) \text{-} \operatorname{sInt}(ff^{-1}(\mu), r, s)$$

$$\leq (\mathcal{U}_i, \mathcal{U}_j) \text{-} \operatorname{sInt}(\mu, r, s).$$

Thus we have

$$\begin{aligned} &(\mathcal{T}_i, \mathcal{T}_j)\text{-}\mathrm{sInt}(f^{-1}(\mu), r, s) \\ &\leq f^{-1}f((\mathcal{T}_i, \mathcal{T}_j)\text{-}\mathrm{sInt}(f^{-1}(\mu), r, s)) \\ &\leq f^{-1}((\mathcal{U}_i, \mathcal{U}_j)\text{-}\mathrm{sInt}(\mu, r, s)). \end{aligned}$$

(3) \Rightarrow (1) Let ρ be any $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-semiopen set of X. Then $(\mathcal{T}_i, \mathcal{T}_j)$ -sInt $(\rho, r, s) = \rho$ and $f(\rho)$ is a fuzzy set of Y. By (3),

$$\begin{split} \rho &= (\mathcal{T}_i, \mathcal{T}_j)\text{-sInt}(\rho, r, s) \\ &\leq (\mathcal{T}_i, \mathcal{T}_j)\text{-sInt}(f^{-1}f(\rho), r, s) \\ &\leq f^{-1}((\mathcal{U}_i, \mathcal{U}_j)\text{-sInt}(f(\rho), r, s)). \end{split}$$

Hence we have

$$f(\rho) \leq f f^{-1}((\mathcal{U}_i, \mathcal{U}_j) \operatorname{-sInt}(f(\rho), r, s))$$

$$\leq (\mathcal{U}_i, \mathcal{U}_j) \operatorname{-sInt}(f(\rho), r, s)$$

$$\leq f(\rho).$$

Thus $f(\rho) = (\mathcal{U}_i, \mathcal{U}_j)$ -sInt $(f(\rho), r, s)$ and hence $f(\rho)$ is a $(\mathcal{U}_i, \mathcal{U}_j)$ -fuzzy (r, s)-semiopen set of Y. Therefore f is a fuzzy pairwise (r, s)-presemiopen mapping. \Box

Theorem 3.5. Let $f : (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a mapping and $r, s \in I_0$. Then the following statements are equivalent:

- (1) f is a fuzzy pairwise (r, s)-presemiclosed mapping.
- (2) For each fuzzy set ρ of X,

$$\begin{aligned} & (\mathcal{U}_i, \mathcal{U}_j) \text{-sCl}(f(\rho), r, s) \\ & \leq f((\mathcal{T}_i, \mathcal{T}_j) \text{-sCl}(\rho, r, s)) \end{aligned}$$

Proof. (1) \Rightarrow (2) Let ρ be any fuzzy set of X. Clearly $(\mathcal{T}_i, \mathcal{T}_j)$ -sCl (ρ, r, s) is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-semiclosed set of X. Since f is a fuzzy pairwise (r, s)-presemiclosed mapping, $f((\mathcal{T}_i, \mathcal{T}_j)$ -sCl $(\rho, r, s))$ is a $(\mathcal{U}_i, \mathcal{U}_j)$ -fuzzy (r, s)-semiclosed set of Y. Thus we have

$$\begin{aligned} & (\mathcal{U}_i, \mathcal{U}_j)\text{-sCl}(f(\rho), r, s) \\ & \leq (\mathcal{U}_i, \mathcal{U}_j)\text{-sCl}(f((\mathcal{T}_i, \mathcal{T}_j)\text{-sCl}(\rho, r, s)), r, s) \\ & = f((\mathcal{T}_i, \mathcal{T}_j)\text{-sCl}(\rho, r, s)). \end{aligned}$$

 $\begin{array}{l} (2) \Rightarrow (1) \mbox{ Let } \rho \mbox{ be any } (\mathcal{T}_i,\mathcal{T}_j)\mbox{-fuzzy } (r,s)\mbox{-semiclosed} \\ \mbox{set of } X. \mbox{ Then } (\mathcal{T}_i,\mathcal{T}_j)\mbox{-scl}(\rho,r,s) = \rho. \mbox{ By } (2), \end{array}$

$$\begin{aligned} (\mathcal{U}_i, \mathcal{U}_j) \text{-sCl}(f(\rho), r, s) &\leq f((\mathcal{T}_i, \mathcal{T}_j) \text{-sCl}(\rho, r, s)) \\ &= f(\rho) \\ &\leq (\mathcal{U}_i, \mathcal{U}_j) \text{-sCl}(f(\rho), r, s). \end{aligned}$$

Thus $f(\rho) = (\mathcal{U}_i, \mathcal{U}_j)$ -sCl $(f(\rho), r, s)$ and hence $f(\rho)$ is a $(\mathcal{U}_i, \mathcal{U}_j)$ -fuzzy (r, s)-semiclosed set of Y. Therefore f is a fuzzy pairwise (r, s)-presemiclosed mapping. \Box

Theorem 3.6. Let $f : (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a bijection and $r, s \in I_0$. Then f is a fuzzy pairwise (r, s)-presemiclosed mapping if and only if $f^{-1}((\mathcal{U}_i, \mathcal{U}_j)$ -sCl $(\mu, r, s)) \leq (\mathcal{T}_i, \mathcal{T}_j)$ -sCl $(f^{-1}(\mu), r, s)$ for each fuzzy set μ of Y.

Proof. Let f be a fuzzy pairwise (r, s)-presemiclosed mapping and let μ be any fuzzy set of Y. Then $f^{-1}(\mu)$ is a fuzzy set of X. Since f is fuzzy pairwise (r, s)-presemiclosed and onto,

$$\begin{aligned} & (\mathcal{U}_i, \mathcal{U}_j) \text{-sCl}(\mu, r, s) \\ &= (\mathcal{U}_i, \mathcal{U}_j) \text{-sCl}(ff^{-1}(\mu), r, s) \\ &\leq f((\mathcal{T}_i, \mathcal{T}_j) \text{-sCl}(f^{-1}(\mu), r, s)) \end{aligned}$$

Since f is one-to-one, we have

$$\begin{aligned} & \stackrel{_{1}}{\leq} \left((\mathcal{U}_{i},\mathcal{U}_{j})\text{-sCl}(\mu,r,s) \right) \\ & \leq f^{-1}f((\mathcal{T}_{i},\mathcal{T}_{j})\text{-sCl}(f^{-1}(\mu),r,s)) \\ & = (\mathcal{T}_{i},\mathcal{T}_{j})\text{-sCl}(f^{-1}(\mu),r,s). \end{aligned}$$

Conversely, let ρ be any $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy (r, s)-semiclosed set of X. Then $(\mathcal{T}_i, \mathcal{T}_j)$ -sCl $(\rho, r, s) = \rho$. Since f is one-to-one,

$$\begin{aligned} f^{-1}((\mathcal{U}_i, \mathcal{U}_j)\text{-sCl}(f(\rho), r, s)) \\ &\leq (\mathcal{T}_i, \mathcal{T}_j)\text{-sCl}(f^{-1}f(\rho), r, s) \\ &= (\mathcal{T}_i, \mathcal{T}_j)\text{-sCl}(\rho, r, s) = \rho. \end{aligned}$$

Since f is onto, we have

$$\begin{aligned} & (\mathcal{U}_i, \mathcal{U}_j)\text{-s}\mathrm{Cl}(f(\rho), r, s) \\ &= ff^{-1}((\mathcal{U}_i, \mathcal{U}_j)\text{-s}\mathrm{Cl}(f(\rho), r, s)) \\ &\leq f(\rho) \\ &\leq (\mathcal{U}_i, \mathcal{U}_j)\text{-s}\mathrm{Cl}(f(\rho), r, s). \end{aligned}$$

Thus $f(\rho) = (\mathcal{U}_i, \mathcal{U}_j)$ -sCl $(f(\rho), r, s)$ and hence $f(\rho)$ is a $(\mathcal{U}_i, \mathcal{U}_j)$ -fuzzy (r, s)-semiclosed set of Y. Therefore f is a fuzzy pairwise (r, s)-presemiclosed mapping.

Acknowledgements

This work was supported by the research grant of the Chungbuk National University in 2008.

References

- K. K. Azad, "On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity," *J. Math. Anal. Appl.*, vol. 82, pp. 14–32, 1981.
- [2] C. L. Chang, "Fuzzy topological spaces," J. Math. Anal. Appl., vol. 24, pp. 182–190, 1968.
- [3] K. C. Chattopadhyay, R. N. Hazra, and S. K. Samanta, "Gradation of openness : Fuzzy topology," *Fuzzy Sets* and Systems, vol. 49, pp. 237–242, 1992.

- [4] A. Kandil, "Biproximities and fuzzy bitopological spaces," *Simon Stevin*, vol. 63, pp. 45–66, 1989.
- [5] E. P. Lee, "Pairwise semicontinuous mappings in smooth bitopological spaces," *Journal of Fuzzy Logic* and Intelligent Systems, vol. 12, pp. 268–274, 2002.
- [6] S. O. Lee and E. P. Lee, "Fuzzy strongly (*r*, *s*)semiopen sets," *International J. Fuzzy Logic and Intelligent Systems*, vol. 6, pp. 299–303, 2006.
- [7] A. A. Ramadan, "Smooth topological spaces," *Fuzzy Sets and Systems*, vol. 48, pp. 371–375, 1992.
- [8] S. Sampath Kumar, "Semi-open sets, semi-continuity and semi-open mappings in fuzzy bitopological spaces," *Fuzzy Sets and Systems*, vol. 64), pp. 421–426, 1994.
- [9] A. P. Šostak, "On a fuzzy topological structure," *Suppl. Rend. Circ. Matem. Janos Palermo*, Sr. II 11, pp. 89–103, 1985.
- [10] L. A. Zadeh, "Fuzzy sets," *Information and Control*, vol. 8, pp. 338–353, 1965.

Seung On Lee

Professor of Chungbuk National University E-mail : solee@chungbuk.ac.kr

Eun Pyo Lee

Professor of Seonam University E-mail : eplee@seonam.ac.kr