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Abstract

In this paper, we introduce the concepts of fuzzy pairwise (r, s)-irresolute, fuzzy pairwise (r, s)-presemiopen and fuzzy
pairwise (r, s)-presemiclosed mappings in smooth bitopological spaces and then we investigate some of their character-
istic properties.
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1. Introduction

After the introduction of fuzzy sets by Zadeh [10],
Chang [2] was the first to introduce the concept of a fuzzy
topology on a set X by axiomatizing a collection T of
fuzzy subsets of X , where he referred to each member of
T as an open set. In his definition of fuzzy topology, fuzzi-
ness in the concept of openness of a fuzzy subset was ab-
sent. These spaces and its generalizations are later studied
by several authors, one of which, developed by Šostak [9],
used the idea of degree of openness. This type of gener-
alization of fuzzy topological spaces was later rephrased
by Chattopadhyay, Hazra, and Samanta [3], and by Ra-
madan [7]. Kandil [4] introduced and studied the notion
of fuzzy bitopological spaces as a natural generalization of
fuzzy topological spaces. Lee [5] introduced the concept of
smooth bitopological spaces as a generalization of smooth
topological spaces and Kandil’s fuzzy bitopological spaces.

In this paper, we introduce the concepts of fuzzy pair-
wise (r, s)-irresolute, fuzzy pairwise (r, s)-presemiopen
and fuzzy pairwise (r, s)-presemiclosed mappings in
smooth bitopological spaces and then we investigate some
of their characteristic properties.

2. Preliminaries

Let I be the closed unit interval [0, 1] of the real line
and let I0 be the half open interval (0, 1] of the real line.
For a set X , IX denotes the collection of all mapping from
X to I . A member µ of IX is called a fuzzy set of X . By 0̃
and 1̃ we denote constant mappings on X with value 0 and
1, respectively. For any µ ∈ IX , µc denotes the comple-
ment 1̃ − µ. All other notations are the standard notations

of fuzzy set theory.
A Chang’s fuzzy topology on X [2] is a family T of

fuzzy sets in X which satisfies the following properties:

(1) 0̃, 1̃ ∈ T .

(2) If µ1, µ2 ∈ T then µ1 ∧ µ2 ∈ T .

(3) If µk ∈ T for all k, then
∨

µk ∈ T .

The pair (X, T ) be called a Chang’s fuzzy topological
space. Members of T are called T -fuzzy open sets of X
and their complements T -fuzzy closed sets of X .

A system (X, T1, T2) consisting of a set X with two
Chang’s fuzzy topologies T1 and T2 on X is called a
Kandil’s fuzzy bitopological space.

A smooth topology on X is a mapping T : IX → I
which satisfies the following properties:

(1) T (0̃) = T (1̃) = 1.

(2) T (µ1 ∧ µ2) ≥ T (µ1) ∧ T (µ2).

(3) T (
∨

µi) ≥
∧ T (µi).

The pair (X, T ) is called a smooth topological space. For
r ∈ I0, we call µ a T -fuzzy r-open set of X if T (µ) ≥ r
and µ a T -fuzzy r-closed set of X if T (µc) ≥ r.

A system (X, T1, T2) consisting of a set X with two
smooth topologies T1 and T2 on X is called a smooth
bitopological space. Throughout this paper the indices i, j
take values in {1, 2} and i 6= j.

Let (X, T ) be a smooth topological space. Then it is
easy to see that for each r ∈ I0, an r-cut

Tr = {µ ∈ IX | T (µ) ≥ r}
is a Chang’s fuzzy topology on X .
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Let (X,T ) be a Chang’s fuzzy topological space and
r ∈ I0. Then the mapping T r : IX → I is defined by

T r(µ) =





1 if µ = 0̃, 1̃,
r if µ ∈ T − {0̃, 1̃},
0 otherwise

becomes a smooth topology.
Hence, we obtain that if (X, T1, T2) is a smooth bitopo-

logical space and r, s ∈ I0, then (X, (T1)r, (T2)s) is a
Kandil’s fuzzy bitopological space. Also, if (X, T1, T2)
is a Kandil’s fuzzy bitopological space and r, s ∈ I0, then
(X, (T1)r, (T2)s) is a smooth bitopological space.

Definition 2.1. [5] Let (X, T ) be a smooth topological
space. For each r ∈ I0 and for each µ ∈ IX , the T -fuzzy
r-closure is defined by

T -Cl(µ, r) =
∧
{ρ ∈ IX | µ ≤ ρ, T (ρc) ≥ r}

and the T -fuzzy r-interior is defined by

T -Int(µ, r) =
∨
{ρ ∈ IX | µ ≥ ρ, T (ρ) ≥ r}.

Lemma 2.2. [5] Let µ be a fuzzy set of a smooth topolog-
ical space (X, T ) and let r ∈ I0. Then we have:

(1) T -Cl(µ, r)c = T -Int(µc, r).

(2) T -Int(µ, r)c = T -Cl(µc, r).

Definition 2.3. [5] Let µ be a fuzzy set of a smooth bitopo-
logical space (X, T1, T2) and r, s ∈ I0. Then µ is said to
be

(1) a (Ti, Tj)-fuzzy (r, s)-semiopen set if there is a Ti-
fuzzy r-open set ρ in X such that ρ ≤ µ ≤
Tj-Cl(ρ, s),

(2) a (Ti, Tj)-fuzzy (r, s)-semiclosed set if there is a Ti-
fuzzy r-closed set ρ in X such that Tj-Int(ρ, s) ≤
µ ≤ ρ.

Definition 2.4. [5] Let (X, T1, T2) be a smooth bitopolog-
ical space. For each r, s ∈ I0 and for each µ ∈ IX , the
(Ti, Tj)-fuzzy (r, s)-semiclosure is defined by

(Ti, Tj)-sCl(µ, r, s) =
∧
{ρ ∈ IX | µ ≤ ρ,

ρ is (Ti, Tj)-fuzzy (r, s)-semiclosed}

and the (Ti, Tj)-fuzzy (r, s)-semiinterior is defined by

(Ti, Tj)-sInt(µ, r, s) =
∨
{ρ ∈ IX | µ ≥ ρ,

ρ is (Ti, Tj)-fuzzy (r, s)-semiopen}.

Lemma 2.5. [5] Let µ be a fuzzy set of a smooth bitopo-
logical space (X, T1, T2) and let r, s ∈ I0. Then we have:

(1) (Ti, Tj)-sCl(µ, r, s)c = (Ti, Tj)-sInt(µc, r, s).

(2) (Ti, Tj)-sInt(µ, r, s)c = (Ti, Tj)-sCl(µc, r, s).

Definition 2.6. [5] Let f : (X, T1, T2) → (Y,U1,U2) be a
mapping from a smooth bitopological space X to a smooth
bitopological space Y and r, s ∈ I0. Then f is said to be

(1) a fuzzy pairwise (r, s)-continuous mapping if the in-
duced mapping f : (X, T1) → (Y,U1) is a fuzzy
r-continuous mapping and the induced mapping f :
(X, T2) → (Y,U2) is a fuzzy s-continuous mapping,

(2) a fuzzy pairwise (r, s)-semicontinuous mapping if
f−1(µ) is a (T1, T2)-fuzzy (r, s)-semiopen set of X
for each U1-fuzzy r-open set µ of Y and f−1(ν) is
a (T2, T1)-fuzzy (s, r)-semiopen set of X for each
U2-fuzzy s-open set ν of Y ,

(3) a fuzzy pairwise (r, s)-precontinuous mapping if
f−1(µ) is a (T1, T2)-fuzzy (r, s)-preopen set of X
for each U1-fuzzy r-open set µ of Y and f−1(ν) is a
(T2, T1)-fuzzy (s, r)-preopen set of X for each U2-
fuzzy s-open set ν of Y .

3. Fuzzy pairwise (r, s)-irresolute, fuzzy
pairwise (r, s)-presemiopen and fuzzy

pairwise (r, s)-presemiclosed mappings

Definition 3.1. Let f : (X, T1, T2) → (Y,U1,U2) be a
mapping from a smooth bitopological space X to a smooth
bitopological space Y and r, s ∈ I0. Then f is called

(1) fuzzy pairwise (r, s)-irresolute if f−1(µ) is a
(Ti, Tj)-fuzzy (r, s)-semiopen set of X for each
(Ui,Uj)-fuzzy (r, s)-semiopen set µ of Y ,

(2) fuzzy pairwise (r, s)-presemiopen if f(ρ) is a
(Ui,Uj)-fuzzy (r, s)-semiopen set of Y for each
(Ti, Tj)-fuzzy (r, s)-semiopen set ρ of X ,

(3) fuzzy pairwise (r, s)-presemiclosed if f(ρ) is a
(Ui,Uj)-fuzzy (r, s)-semiclosed set of Y for each
(Ti, Tj)-fuzzy (r, s)-semiclosed set ρ of X .

Theorem 3.2. Let f : (X, T1, T2) → (Y,U1,U2) be a
mapping and r, s ∈ I0. Then the following statements are
equivalent:

(1) f is a fuzzy pairwise (r, s)-irresolute mapping.

(2) f−1(µ) is a (Ti, Tj)-fuzzy (r, s)-semiclosed set of X
for each (Ui,Uj)-fuzzy (r, s)-semiclosed set µ of Y .

(3) For each fuzzy set ρ of X ,

f((Ti, Tj)-sCl(ρ, r, s))
≤ (Ui,Uj)-sCl(f(ρ), r, s).
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(4) For each fuzzy set µ of Y ,

(Ti, Tj)-sCl(f−1(µ), r, s)

≤ f−1((Ui,Uj)-sCl(µ, r, s)).

(5) For each fuzzy set µ of Y ,

f−1((Ui,Uj)-sInt(µ, r, s))

≤ (Ti, Tj)-sInt(f−1(µ), r, s).

Proof. (1) ⇒ (2) Let µ be any (Ui,Uj)-fuzzy (r, s)-
semiclosed set of Y . Then µc is a (Ui,Uj)-fuzzy (r, s)-
semiopen set of Y . Since f is a fuzzy pairwise (r, s)-
irresolute mapping, f−1(µc) is a (Ti, Tj)-fuzzy (r, s)-
semiopen set of X . Thus f−1(µ) is a (Ti, Tj)-fuzzy (r, s)-
semiclosed set of X .

(2) ⇒ (3) Let ρ be any fuzzy set of X . Then
(Ui,Uj)-sCl(f(ρ), r, s) is a (Ui,Uj)-fuzzy (r, s)-
semiclosed set of Y . By (2), f−1((Ui,Uj)-sCl(f(ρ), r, s))
is a (Ti, Tj)-fuzzy (r, s)-semiclosed set of X . Since
f(ρ) ≤ (Ui,Uj)-sCl(f(ρ), r, s), we have

(Ti, Tj)-sCl(ρ, r, s)

≤ (Ti, Tj)-sCl(f−1f(ρ), r, s)

≤ (Ti, Tj)-sCl(f−1((Ui,Uj)-sCl(f(ρ), r, s)), r, s)

= f−1((Ui,Uj)-sCl(f(ρ), r, s)).

Hence

f((Ti, Tj)-sCl(ρ, r, s))

≤ ff−1((Ui,Uj)-sCl(f(ρ), r, s))
≤ (Ui,Uj)-sCl(f(ρ), r, s).

(3) ⇒ (4) Let µ be any fuzzy set of Y . By (3),

f((Ti, Tj)-sCl(f−1(µ), r, s))

≤ (Ui,Uj)-sCl(ff−1(µ), r, s)
≤ (Ui,Uj)-sCl(µ, r, s).

Thus
(Ti, Tj)-sCl(f−1(µ), r, s)

≤ f−1f((Ti, Tj)-sCl(f−1(µ), r, s))

≤ f−1((Ui,Uj)-sCl(µ, r, s)).
(4) ⇒ (5) Let µ be any fuzzy set of Y . Then µc is a

fuzzy set of Y . By (4),

(Ti, Tj)-sCl(f−1(µ)c, r, s)

= (Ti, Tj)-sCl(f−1(µc), r, s)

≤ f−1((Ui,Uj)-sCl(µc, r, s)).

By Lemma 2.5,

f−1((Ui,Uj)-sInt(µ, r, s))

= f−1((Ui,Uj)-sCl(µc, r, s))c

≤ (Ti, Tj)-sCl(f−1(µc), r, s)c

= (Ti, Tj)-sInt(f−1(µ), r, s).

(5) ⇒ (1) Let µ be any (Ui,Uj)-fuzzy (r, s)-semiopen
set of Y . Then (Ui,Uj)-sInt(µ, r, s) = µ. By (5),

f−1(µ) = f−1((Ui,Uj)-sInt(µ, r, s))

≤ (Ti, Tj)-sInt(f−1(µ), r, s)

≤ f−1(µ).

So f−1(µ) = (Ti, Tj)-sInt(f−1(µ), r, s) and hence
f−1(µ) is a (Ti, Tj)-fuzzy (r, s)-semiopen set of X . Thus
f is a fuzzy pairwise (r, s)-irresolute mapping.

Theorem 3.3. Let f : (X, T1, T2) → (Y,U1,U2) be a bi-
jection and r, s ∈ I0. Then f is a fuzzy pairwise (r, s)-
irresolute mapping if and only if (Ui,Uj)-sInt(f(ρ), r, s) ≤
f((Ti, Tj)-sInt(ρ, r, s)) for each fuzzy set ρ of X .

Proof. Let f be a fuzzy pairwise (r, s)-irresolute mapping
and ρ any fuzzy set of X . Since (Ui,Uj)-sInt(f(ρ), r, s)
is a (Ui,Uj)-fuzzy (r, s)-semiopen set of Y , we have
f−1((Ui,Uj)-sInt(f(ρ), r, s)) is a (Ti, Tj)-fuzzy (r, s)-
semiopen set of X . Since f is fuzzy pairwise (r, s)-
irresolute and one-to-one, we have

f−1((Ui,Uj)-sInt(f(ρ), r, s))

≤ (Ti, Tj)-sInt(f−1f(ρ), r, s)
= (Ti, Tj)-sInt(ρ, r, s).

Since f is onto,

(Ui,Uj)-sInt(f(ρ), r, s)

= ff−1((Ui,Uj)-sInt(f(ρ), r, s))
≤ f((Ti, Tj)-sInt(ρ, r, s)).

Conversely, let µ be any (Ui,Uj)-fuzzy (r, s)-semiopen
set of Y . Then (Ui,Uj)-sInt(µ, r, s) = µ. Since f is onto,

f((Ti, Tj)-sInt(f−1(µ), r, s))

≥ (Ui,Uj)-sInt(ff−1(µ), r, s)
= (Ui,Uj)-sInt(µ, r, s) = µ.

Since f is one-to-one, we have

f−1(µ) ≤ f−1f((Ti, Tj)-sInt(f−1(µ), r, s))

= (Ti, Tj)-sInt(f−1(µ), r, s)

≤ f−1(µ).

Thus f−1(µ) = (Ti, Tj)-sInt(f−1(µ), r, s) and hence
f−1(µ) is a (Ti, Tj)-fuzzy (r, s)-semiopen set of X . There-
fore f is a fuzzy pairwise (r, s)-irresolute mapping.

Theorem 3.4. Let f : (X, T1, T2) → (Y,U1,U2) be a
mapping and r, s ∈ I0. Then the following statements are
equivalent:
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(1) f is a fuzzy pairwise (r, s)-presemiopen mapping.

(2) For each fuzzy set ρ of X ,

f((Ti, Tj)-sInt(ρ, r, s))
≤ (Ui,Uj)-sInt(f(ρ), r, s).

(3) For each fuzzy set µ of Y ,

(Ti, Tj)-sInt(f−1(µ), r, s)

≤ f−1((Ui,Uj)-sInt(µ, r, s))

Proof. (1) ⇒ (2) Let ρ be any fuzzy set of X . Clearly
(Ti, Tj)-sInt(ρ, r, s) is a (Ti, Tj)-fuzzy (r, s)-semiopen set
of X . Since f is a fuzzy pairwise (r, s)-presemiopen
mapping, f((Ti, Tj)-sInt(ρ, r, s)) is a (Ui,Uj)-fuzzy (r, s)-
semiopen set of Y . Thus

f((Ti, Tj)-sInt(ρ, r, s))
= (Ui,Uj)-sInt(f((Ti, Tj)-sInt(ρ, r, s)), r, s)
≤ (Ui,Uj)-sInt(f(ρ), r, s).

(2) ⇒ (3) Let µ be any fuzzy set of Y . Then f−1(µ) is
a fuzzy set of X . By (2),

f((Ti, Tj)-sInt(f−1(µ), r, s))

≤ (Ui,Uj)-sInt(ff−1(µ), r, s)
≤ (Ui,Uj)-sInt(µ, r, s).

Thus we have

(Ti, Tj)-sInt(f−1(µ), r, s)

≤ f−1f((Ti, Tj)-sInt(f−1(µ), r, s))

≤ f−1((Ui,Uj)-sInt(µ, r, s)).

(3) ⇒ (1) Let ρ be any (Ti, Tj)-fuzzy (r, s)-semiopen
set of X . Then (Ti, Tj)-sInt(ρ, r, s) = ρ and f(ρ) is a
fuzzy set of Y . By (3),

ρ = (Ti, Tj)-sInt(ρ, r, s)

≤ (Ti, Tj)-sInt(f−1f(ρ), r, s)

≤ f−1((Ui,Uj)-sInt(f(ρ), r, s)).

Hence we have

f(ρ) ≤ ff−1((Ui,Uj)-sInt(f(ρ), r, s))
≤ (Ui,Uj)-sInt(f(ρ), r, s)
≤ f(ρ).

Thus f(ρ) = (Ui,Uj)-sInt(f(ρ), r, s) and hence f(ρ) is a
(Ui,Uj)-fuzzy (r, s)-semiopen set of Y . Therefore f is a
fuzzy pairwise (r, s)-presemiopen mapping.

Theorem 3.5. Let f : (X, T1, T2) → (Y,U1,U2) be a
mapping and r, s ∈ I0. Then the following statements are
equivalent:

(1) f is a fuzzy pairwise (r, s)-presemiclosed mapping.

(2) For each fuzzy set ρ of X ,

(Ui,Uj)-sCl(f(ρ), r, s)
≤ f((Ti, Tj)-sCl(ρ, r, s))

Proof. (1) ⇒ (2) Let ρ be any fuzzy set of X . Clearly
(Ti, Tj)-sCl(ρ, r, s) is a (Ti, Tj)-fuzzy (r, s)-semiclosed
set of X . Since f is a fuzzy pairwise (r, s)-presemiclosed
mapping, f((Ti, Tj)-sCl(ρ, r, s)) is a (Ui,Uj)-fuzzy (r, s)-
semiclosed set of Y . Thus we have

(Ui,Uj)-sCl(f(ρ), r, s)
≤ (Ui,Uj)-sCl(f((Ti, Tj)-sCl(ρ, r, s)), r, s)
= f((Ti, Tj)-sCl(ρ, r, s)).

(2) ⇒ (1) Let ρ be any (Ti, Tj)-fuzzy (r, s)-semiclosed
set of X . Then (Ti, Tj)-sCl(ρ, r, s) = ρ. By (2),

(Ui,Uj)-sCl(f(ρ), r, s) ≤ f((Ti, Tj)-sCl(ρ, r, s))
= f(ρ)
≤ (Ui,Uj)-sCl(f(ρ), r, s).

Thus f(ρ) = (Ui,Uj)-sCl(f(ρ), r, s) and hence f(ρ) is a
(Ui,Uj)-fuzzy (r, s)-semiclosed set of Y . Therefore f is a
fuzzy pairwise (r, s)-presemiclosed mapping.

Theorem 3.6. Let f : (X, T1, T2) → (Y,U1,U2)
be a bijection and r, s ∈ I0. Then f is a fuzzy
pairwise (r, s)-presemiclosed mapping if and only if
f−1((Ui,Uj)-sCl(µ, r, s)) ≤ (Ti, Tj)-sCl(f−1(µ), r, s)
for each fuzzy set µ of Y .

Proof. Let f be a fuzzy pairwise (r, s)-presemiclosed map-
ping and let µ be any fuzzy set of Y . Then f−1(µ)
is a fuzzy set of X . Since f is fuzzy pairwise (r, s)-
presemiclosed and onto,

(Ui,Uj)-sCl(µ, r, s)

= (Ui,Uj)-sCl(ff−1(µ), r, s)

≤ f((Ti, Tj)-sCl(f−1(µ), r, s)).

Since f is one-to-one, we have

f−1((Ui,Uj)-sCl(µ, r, s))

≤ f−1f((Ti, Tj)-sCl(f−1(µ), r, s))

= (Ti, Tj)-sCl(f−1(µ), r, s).

Conversely, let ρ be any (Ti, Tj)-fuzzy (r, s)-
semiclosed set of X . Then (Ti, Tj)-sCl(ρ, r, s) = ρ. Since
f is one-to-one,

f−1((Ui,Uj)-sCl(f(ρ), r, s))

≤ (Ti, Tj)-sCl(f−1f(ρ), r, s)
= (Ti, Tj)-sCl(ρ, r, s) = ρ.
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Since f is onto, we have

(Ui,Uj)-sCl(f(ρ), r, s)

= ff−1((Ui,Uj)-sCl(f(ρ), r, s))
≤ f(ρ)
≤ (Ui,Uj)-sCl(f(ρ), r, s).

Thus f(ρ) = (Ui,Uj)-sCl(f(ρ), r, s) and hence f(ρ) is a
(Ui,Uj)-fuzzy (r, s)-semiclosed set of Y . Therefore f is a
fuzzy pairwise (r, s)-presemiclosed mapping.
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