• Title/Summary/Keyword: k smooth spaces

Search Result 104, Processing Time 0.017 seconds

ON THE EXISTENCE OF SOLUTIONS OF EXTENDED GENERALIZED VARIATIONAL INEQUALITIES IN BANACH SPACES

  • He, Xin-Feng;Wang, Xian;He, Zhen
    • East Asian mathematical journal
    • /
    • v.25 no.4
    • /
    • pp.527-532
    • /
    • 2009
  • In this paper, we study the following extended generalized variational inequality problem, introduced by Noor (for short, EGVI) : Given a closed convex subset K in q-uniformly smooth Banach space B, three nonlinear mappings T : $K\;{\rightarrow}\;B^*$, g : $K\;{\rightarrow}\;K$, h : $K\;{\rightarrow}\;K$ and a vector ${\xi}\;{\in}\;B^*$, find $x\;{\in}\;K$, $h(x)\;{\in}\;K$ such that $\xi$, g(y)-h(x)> $\geq$ 0, for all $y\;{\in}\;K$, $g(y)\;{\in}\;K$. [see [2]: M. Aslam Noor, Extended general variational inequalities, Appl. Math. Lett. 22 (2009) 182-186.] By using sunny nonexpansive retraction $Q_K$ and the well-known Banach's fixed point principle, we prove existence results for solutions of (EGVI). Our results extend some recent results from the literature.

ON THE CONVERGENCE OF SERIES OF MARTINGALE DIFFERENCES WITH MULTIDIMENSIONAL INDICES

  • SON, TA CONG;THANG, DANG HUNG
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1023-1036
    • /
    • 2015
  • Let {Xn; $n{\succeq}1$} be a field of martingale differences taking values in a p-uniformly smooth Banach space. The paper provides conditions under which the series ${\sum}_{i{\preceq}n}\;Xi$ converges almost surely and the tail series {$Tn={\sum}_{i{\gg}n}\;X_i;n{\succeq}1$} satisfies $sup_{k{\succeq}n}{\parallel}T_k{\parallel}=\mathcal{O}p(b_n)$ and ${\frac{sup_{k{\succeq}n}{\parallel}T_k{\parallel}}{B_n}}{\rightarrow\limits^p}0$ for given fields of positive numbers {bn} and {Bn}. This result generalizes results of A. Rosalsky, J. Rosenblatt [7], [8] and S. H. Sung, A. I. Volodin [11].

A SYSTEM OF VARIATIONAL INCLUSIONS IN BANACH SPACES

  • Liu, Zeqing;Zhao, Liangshi;Hwang, Hong-Taek;Kang, Shin-Min
    • East Asian mathematical journal
    • /
    • v.26 no.5
    • /
    • pp.681-691
    • /
    • 2010
  • A system of variational inclusions with (A, ${\eta}$, m)-accretive operators in real q-uniformly smooth Banach spaces is introduced. Using the resolvent operator technique associated with (A, ${\eta}$, m)-accretive operators, we prove the existence and uniqueness of solutions for this system of variational inclusions and propose a Mann type iterative algorithm for approximating the unique solution for the system of variational inclusions.

INTERVAL-VALUED SMOOTH TOPOLOGICAL SPACES

  • Choi, Jeong-Yeol;Kim, So-Ra;Hur, Kul
    • Honam Mathematical Journal
    • /
    • v.32 no.4
    • /
    • pp.711-738
    • /
    • 2010
  • We list two kinds of gradation of openness and we study in the sense of the followings: (i) We give the definition of IVGO of fuzzy sets and obtain some basic results. (ii) We give the definition of interval-valued gradation of clopeness and obtain some properties. (iii) We give the definition of a subspace of an interval-valued smooth topological space and obtain some properties. (iv) We investigate some properties of gradation preserving (in short, IVGP) mappings.

STRONG CONVERGENCE AND ALMOST STABILITY OF ISHIKAWA ITERATIVE SCHEMES WITH ERRORS IN BANACH SPACES

  • Zeqing Liu;Kim, Jong-Kyu;Park, Hye-Kyeong
    • Journal of applied mathematics & informatics
    • /
    • v.10 no.1_2
    • /
    • pp.261-275
    • /
    • 2002
  • Let T be a local strongly accretive operator from a real uniformly smooth Banach space X into itself. It is proved that Ishikawa iterative schemes with errors converge strongly to a unique solution of the equations T$\_$x/ = f and x + T$\_$x/ = f, respectively, and are almost T$\_$b/-stable. The related results deal with the strong convergence and almost T$\_$b/-stability of Ishikawa iterative schemes with errors for local strongly pseudocontractive operators.

THE RANDER CHANGES OF FINSLER SPACES WITH ($\alpha,\beta$)-METRICS OF DOUGLAS TYPE

  • Park, Hong-Suh;Lee, Il-Yong
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.503-521
    • /
    • 2001
  • A change of Finsler metric L(x,y)longrightarrowL(x,y) is called a Randers change of L, if L(x,y) = L(x,y) +$\rho$(x,y), where $\rho$(x,y) = $\rho$(sub)i(x)y(sup)i is a 1-form on a smooth manifold M(sup)n. Let us consider the special Randers change of Finsler metric LlongrightarrowL = L + $\beta$ by $\beta$. On the basis of this special Randers change, the purpose of the present paper is devoted to studying the conditions for Finsler space F(sup)n which are transformed by a special Randers change of Finsler spaces F(sup)n with ($\alpha$,$\beta$)-metrics of Douglas type to be also of Douglas type, and vice versa.

  • PDF

A HYBRID PROXIMAL POINT ALGORITHM AND STABILITY FOR SET-VALUED MIXED VARIATIONAL INCLUSIONS INVOLVING (A, ${\eta}$)-ACCRETIVE MAPPINGS

  • Kim, Jong-Kyu;Li, Hong Gang
    • East Asian mathematical journal
    • /
    • v.26 no.5
    • /
    • pp.703-714
    • /
    • 2010
  • A new class of nonlinear set-valued mixed variational inclusions involving (A, ${\eta}$)-accretive mappings in Banach spaces is introduced and studied, which includes many kind of variational inclusion (inequality) and complementarity problems as special cases. By using the resolvent operator associated with (A, ${\eta}$)-accretive operator due to Lan-Cho-Verma, the existence of solution for this kind of variational inclusion is proved, and a new hybrid proximal point algorithm is established and suggested, the convergence and stability theorems of iterative sequences generated by new iterative algorithms are also given in q-uniformly smooth Banach spaces.

REMARKS ON UNIQUENESS AND BLOW-UP CRITERION TO THE EULER EQUATIONS IN THE GENERALIZED BESOV SPACES

  • Ogawa, Takayoshi;Taniuchi, Yasushi
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.6
    • /
    • pp.1007-1019
    • /
    • 2000
  • In this paper, we discuss a uniqueness problem for the Cauchy problem of the Euler equation. W give a sufficient condition on the vorticity to show the uniqueness of a class of generalized solution in terms of the generalized solution in terms o the generalized Besov space. The condition allows the iterated logarithmic singularity to the vorticity of the solution. We also discuss the break down (or blow up) condition for a smooth solution to the Euler equation under the related assumption.

  • PDF

THE SHRINKING PROJECTION METHODS FOR HEMI-RELATIVELY NONEXPANSIVE MAPPINGS, VARIATIONAL INEQUALITIES AND EQUILIBRIUM PROBLEMS

  • Wang, Zi-Ming;Kang, Mi Kwang;Cho, Yeol Je
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.1
    • /
    • pp.191-207
    • /
    • 2013
  • In this paper, we introduce the shrinking projection method for hemi-relatively nonexpansive mappings to find a common solution of variational inequality problems and equilibrium problems in uniformly convex and uniformly smooth Banach spaces and prove some strong convergence theorems to the common solution by using the proposed method.