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A SYSTEM OF VARIATIONAL INCLUSIONS
IN BANACH SPACES

ZEQING L1U, LIANGSHI ZHAO, HONG TAEK HWANG AND SHIN MIN KANG*

ABSTRACT. A system of variational inclusions with (A, 7, m)-accretive
operators in real g-uniformly smooth Banach spaces is introduced. Us-
ing the resolvent operator technique associated with (A, n, m)-accretive
operators, we prove the existence and uniqueness of solutions for this
system of variational inclusions and propose a Mann type iterative algo-
rithm for approximating the unique solution for the system of variational
inclusions.

1. Introduction

Variational inclusions have a wide range of applications in the fields of opti-
mization, economics, transportation equilibrium and engineering sciences. For
details, we refer the reader to [1-5,7-9] and the references therein.

Recently, some authors discussed several systems of variational inclusions
in Hilbert and Banach spaces. Fang and Huang [2] introduced and studied a
system of variational inclusions involving (H, n)-monotone operators in Hilbert
spaces. Afterwards, Fang and Huang [3] considered a system of variational
inclusions involving H-accretive operators in Banach spaces. Ding and Feng
[1] and Peng and Zhu [9] discussed, respectively, a system of generalized mixed
quasi-variational inclusions with (A, n)-accretive operators and a system of vari-
ational inclusions with P-n-accretive operators in g-uniformly smooth Banach
spaces. Lately, Peng [7] investigated a system of variational inclusions with
(A, n, m)-accretive operators in g-uniformly smooth Banach spaces.

Motivated and inspired by the research work in [1-5,7-9], we introduce and
study a system of variational inclusions with (A,n, m)-accretive operators in
real g-uniformly smooth Banach spaces. By means of the resolvent operator
technique associated with (A, 7, m)-accretive operators, we establish the exis-
tence and uniqueness of solutions for the system of variational inclusions and
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suggest a Mann type iterative algorithm for approximating the unique solution
of the system of variational inclusions.

2. Preliminaries

Throughout this paper, we assume that (E, | -||) is a real Banach space with
the dual space and the generalized dual pair denoted by E* and (-, -), respec-
tively, 2% is the family of all the nonempty subsets of E and the generalized
duality mapping Jq : £ — 2E" is defined by

Jo(x) = {f* € B* : (a, f*) = IF* |l - ll=ll, 11£71 = =l *™"}, Vo€ B,

where ¢ > 1 is a constant. In particular, J, is the usual normalized duality
mapping. It is known that, in general, J,(z) = ||lz||972J2(x) for all z # 0 and
Jq is single-valued if E* is strictly convex.

The modulus of smoothness of E is the function pg : [0,00) — [0, 00) defined
by

1
pi(t) = sup{ 5o+ ol + o= yl) = 1: ol < 1 1ol < 1],
A Banach space E is called uniformly smooth if

im P20 _
t—0 t

FE is called g-uniformly smooth if there exists a constant ¢ > 0 such that

Note that J; is single-valued if E is uniformly smooth.
We recall some definitions needed later.

Definition 2.1. ([4]) Let E be a real uniformly smooth Banach space and
T:E— Eandn:ExFE— E be two single-valued operators. T is said to be
(1) n-accretive if

(T(x) = T(y), Jg(n(z,9))) 20, Va,y € E;
(2) strictly m-accretive if T' is n-accretive and
(T(w) — T(y), Jy(nz,))) =0 if and only if = = y;
(3) r-strongly n-accretive if there exists a constant r > 0 such that
(T(x) =T(y), Jyn(z,y))) = rllz =yl Ve,y € E;
(4) Lipschitz continuous if there exists a constant s > 0 such that

IT(z) =T < sl —yll, v,y E.
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Definition 2.2. ([4]) Let E be a real uniformly smooth Banach space and
T:FE— Fand g: FEx E— FE be two single-valued operators. T is said to be
) (e, &)-relazed cocoercive if there exist constants o, & > 0 such that

(1
(T(x) = T(y), Jo(x —y)) = —a|[T(x) = T(Y)||" + &l =yl Yo,y € E;
(2

) (a, &)-relazed cocoercive with respect to g if there exist constants «, & > 0
such that

(T(z) =T(y), Jo(9(x) —9(y))) = —alT(z) = TW)|* +&llz —yl?,  Va,y € E;
(3) &-strongly accretive with respect to g if there exists a constant £ > 0 such
that
(T(z) = T(y), Jo(9(x) —g(y))) = &llx =yl Va,y € E.

Definition 2.3. ([4,7]) Let n : E x E — FE be a single-valued operator and
M : E — 2F be a multi-valued operator. M is said to be relazed n-accretive
with a constant m if there exists a constant m > 0 such that

(u—v,Jy(n(x,y))) = —mlz —yl|?, Ve,ye€ E,uec M(z),ve My).

Definition 2.4. ([4,7]) Let n : Ex E — E, A: E — FE be single-valued
operators and M : E — 2F be a multi-valued operator. M is said to be
(A, n,m)-accretive if M is relaxed n-accretive with a constant m and (A +
pM)(E) = E holds for all p > 0.

Definition 2.5. ([9]) A single-valued operator n : E x E — E is said to be
T-Lipschitz continuous if there exists a constant 7 > 0 such that

In(u,v)|| < 7llu—wv|, Yu,veE.

Based on Theorem 3.2 and Definition 3.2 in [4], we introduce the following
concept.

Definition 2.6. Let nn: E x E — E be a single-valued operator, A: E — E
be a strictly n-accretive single-valued operator and M, N : E x E — 2F satisfy
that for each w € E, M(-,w) and N( -) are (A n, m)-accretive. Then for each
w € FE, the resolvent operators RM( w), /\m,RN("w A : F — F associated

with A,n,m, M, N, X are defined, respectively, by

Ry1 oy am (W) = (A+AM(w) " (), VueE,

R ) am(@) = (A4 AN(w, ) (w), VueE.

Definition 2.7. A single-valued operator F': E x E — E is said to be (I,0)-
Lipschitz continuous if there exist two constants [ > 0 and 6 > 0 such that

1 (ur,01) = F(ug, va)|| < Ulur —wal| +0llvr —vall,  Vur,ug, 01,09 € E;

Lemma 2.1. ([10]) Let E be a real uniformly smooth Banach space. Then E
is g-uniformly smooth if and only if there exists a constants cq > 0 satisfying

e +yll* <Nzl + a(y, Jo(2)) + cqllyll?,  Va,y € E.
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It follows from Theorem 3.3 in [4] that

Lemma 2.2. For each i € {1,2}, let n; : E x E — E be a Lipschitz con-
tinuous operator with a constant 7; and A; : E — E be a vy;-strongly n;-
accretive operator. Let M : E x E — 2F satisfy that for each u € E, M(-,u)
is (Ay,m,m1)-accretive and N : E x E — 2F satisfy that for each u € E,
N(u,-) is (A2, n2, ma)-accretive. Then for each u € E, the resolvent operators

R?j(’j;),h,ml’ Rﬁ?f’?)’)\%m : E — E are Lipschitz continuous with constants
%i:&’ respectively, i.e.,
Ar,m Ar,m a1
RSy v (@) = B3y s O] £ Sl =l Yoy € B,
a—1
HRJJ&\"Z)(;Z%)«\z,mz (z) = Rﬁ;z?),,\z,m (Q)H < mw —yll, Vx,y€E,

where \; € (0, 2%) is a constant.

Lemma 2.3. ([6]) Let {an}tn>0, {Bntn>0, {¥n}n>0 and {tn}n>0 be four non-
negative sequences satisfying the inequality

Q41 S (1 - tn)an + tnﬂn + Yny n Z 0,

where {t, }n>0 C [0,1], ZZO:O t, = 400, limy,_ oo B, = 0 and ZZO:O Y < +00.
Then lim,,_, &y, = 0.

3. A system of variational inclusions

In this section, we introduce a system of variational inclusions with (A, 7, m)-
accretive operators. In what follows, unless specified otherwise, we always
suppose that E is a real g-uniformly smooth Banach space, 4; : E — E,
n:ExE—FEforie{l,2}, f,g:F—-E ph:E—E F:ExFE—FE and
G : E x E — E are all single-valued operators. Let M : E x E — 2F satisfy
that for each u € E, M(-,u) is (Ay,7n1, my)-accretive and N : E x E — 2F
satisfy that for each u € E, N(u,-) is (Aa,n2, ma)-accretive. We consider the
following problem of finding (x,y) € E x E such that

{0 € F(x,y) + M(f(z),p(y)),

(3.1)
0 € G(x,y) + N(g(z), h(y)).

Lemma 3.1. Fori € 1,2, let \; be a positive constant, E be a real q-uniformly
Banach space, f,g,h,p: E — E, n;,F,G: E x E — E be single-valued opera-
tors and A; : E — E be a strictly n;-accretive operator. If M : Ex E — 2F sat-
isfies that for eachu € E, M(-,u) is (Ay,n1, m1)-accretive and N : Ex E — 2F
satisfies that for each w € E, N(u,-) is (Az2,n2, ma)-accretive, then (z,y) €
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E X E is a solution of the problem (3.1) if and only if (x,y) € E x E satisfies

that
{fm = B (A1(@)) = MaF (@), 52)
h(y) = B2 5 (A2(h(Y)) = oGz, y)).
Remark 3.1. The equality (3.2) can be written as
v = (1= p)z + [z — f(2)
Al, 1
+Ry, ! p(),A1, ml( 1(f(z)) = A F(%y))]a (3.3)

y=(1- M2)Z/ + p2ly — h(y)
FREETE e (A2(h(Y)) = XGl,1))],

where p1, p2 € (0,1] are two parameters.

4. Existence of solution and Mann iterative approximations
for a system of variational inclusions

Now we prove the existence and uniqueness of solutions for the problem (3.1)
and construct the Mann type iterative algorithm for approximating the unique
solution of the problem (3.1).

Theorem 4.1. For i € {1,2}, let E be a real q-uniformly smooth Banach
space, n; : ExX E — E be 1;-Lipschitz continuous, A; : E — E be ~y;-strongly n;-
accretive and 6;-Lipschitz continuous, f : E — E be (t1,r1)-relazed cocoercive
and s1-Lipschitz continuous, g : E — E be & -Lipschitz continuous, p: E — E
be &o-Lipschitz continuous, h : E — E be (ta,r9)-relaxed cocoercive and so-
Lipschitz continuous, F : Ex E — E be (a1, 81)-relazed cocoercive with respect
to Ay o f and (01, 61)-Lipschitz continuous, G : E x E — E be (ag, B2)-relazed
cocoercive with respect to Ag o h and (o2, 02)-Lipschitz continuous, M : E X
E — 2F satisfy that for each u € E, M(-,u) is (A1,m1,my)-accretive and
N : E x E — 2F satisfy that for each w € E,N(u,-) is (Ag,n2, mso)-accretive.
If there exist positive constants p1, pa, A1, A2, p1, g satisfying A; < %,ui <1
forie{1,2},

A1, Ay, _ _
HRMI(.E) Aty (z) — RMI(T%)’)\IMI (x)H <pilly—-yll, VeeE, yyckE, (41)

HRA2J72 (y) _ RAQih

() A N(m,-).)\g,mg(y)” <pllz—Z||, Vr,T€E,yeFE (4.2)

and

Q=

k = max {1 — 1+ (1 + qtls‘f —qr1 + cqs({)

q—1
H1Ty

1
——— (01s] + ahiono] — g B+ M of) T + papa8y (43)
71— miAy

paTy N0y
Y2 — m2)\2

Q=

s — o+ ,u2(1 + qtosd — qra + cqsg)
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pord !
Y2 — MaA2
+ ,M1Tl )\191 }

Y1 — miAy

1
(6258 + qhocad — A2 + cqAiod) T + p1p1&a

<1,

then

(a) the problem (3.1) admits a unique solution (x,y) € E x E;

(b) for any given (xo,y0) € EXE, the Mann iterative sequence {(n, Yn) fn>0
defined by

Tni1 = (1= an)@p + an{(1 — p1)zy + pa [2n — f(20)
+RA1(’m(yn)) (AL (F(xn)) = MF(20,y0))] } + cn,

Ynt1 = (1= bp)yn + bu{ (1 — p2)yn + 2 [yn — h(yn)
FRY ) vwms (A2 (1)) = 22G(a0n,9a))] } + dn

(4.4)

for each n > 0, where {an}n>0, {bn}tn>0 C [0,1] and {c,}n>0, {dn}tn>0 are
any bounded sequences in E satisfying

o0

Z [min{a,, by} — kmax{an, b,}] = +oc0

n=0
min{a,, b, } > kmax{a,,b,}, Vn >0

and

Z el + [|dnl]) < 400 (4.6)
converges strongly to the unique solution (x,y) of the problem (3.1).
Proof. Define S: EXxFE — FandT: E x E — E by

S(u,v) = (1 — p1)u+ [u — f(u)
R oy (A1) = M F (0, 0)]

and
T(u,v) = (1—p2)v+ps [v—h(v )JrRA?(v"(‘Z) N (A2(h(v))=A2G(u,v))] (4.8)

for all (u,v) € E X E.
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Put (u1,v1), (ug,v2) € E x E. Tt follows from (4.7) and (4.8) that
HS u1,v1) — S(ug, ve) H
= || (1 = pua) (ur — ug) + pua [ur — ug — ( (u1) — f(uz))
R ) e (A1 (F (1) = M F(u, 1))
= B ) o (A1(F(12)) = M F (02, 02)] |
< (1= ) [Jur = ual + pr f|ur —uz — ( (u1) = f(u2))]| (4.9)
+ 'ulHRﬁl(,:][l)(vl)),)\hml (Ar(f(u1)) = M F(ur,v1))
- R?j(’-"?;l)(vl)),)\l,ml (A1(f (u2)) = M F (ug, va)) ||
+ “1||Rf41(’n;(ul)),xl,ml (A1(f(u2)) = A F(ug, v2))
= Ry ar (A1 (F(12)) = M F (2, 0)) |
and
HT(ul,vl) - T(uQ,vg)H
= [|(1 = p2)(v1 — v2) + pa[v1 — v2 — (h(v ) — h(vs))
+ R#(gmul) ) A2,ma (A2(h(vl)) G(uy, v )
= B3l pms (A2(A(22)) = 2aG (2, 02) )] |
< (1= po)Jor — va| + pajvr —v2 — (h(vl) — h(v2))|| (4.10)

2 | R, s e (A2(B(01)) = XaG(un, 1))
= RN ) ams (A2(R(v2)) = AaG(uz, v2)) |

12l | R v (A2((02)) = XaGluz, v2))
— RQQ(;(Q“Q)’.))\Q,m2 (Ag(h(’l)g)) — )\QG(UQ, ’UQ)) H

On account of Lemmas 2.1 and 2.2 and our assumptions, we obtain that

lux =z = (1) = f(uz))||”

< lur = o] = q(f(ur) — f(u2), Jg(ur — u2)) + cqll f(ur) — fu2)]|?
< Jur = wl|” = q(— tall fur) — fu) |7+ rillur — uzl|?)

(4.11)
+cqsiflur — uz||?
< (T4 qtis{ — qr1 + cgs?) lur — ual|?,
[|v1 = va = (A(v1) = h(va))*
< o1 = w2l = q(h(v1) = h(v2), Jq(v1 — v2)) + cql|R(v1) — h(v2)[*
< lor = va|? — g (= t2llh(v1) = h(v2)[|? + r2llvr — v2]|7) (4.12)
+ cqs3]lv1 — val|?

< (1+ qtasd — qra + cqs8) o1 — v2 9,
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IR oy (A1 (F(u1)) = M F (g, v1))
- RZ\AJI(’j;(v1)),/\1,m1 (A1<f(u2)) - AlF(UQaUZ)) H

(4.13)
g—1
< ?7)\“441(10(“1)) — A1 (f(u2)) = A (F(ur, 1) = F(uz,v2))],
Y1 — MiA1L
RN ) apma (A2 (B(v1)) = Ao Gur, v1))
= RNy p i (A2 (B(02)) = AaG (2, v2) )| (4.14)
q—1
S ?7/\||A2(h(1}1)) — AQ(h(’UQ)) — )\2 (G(ul,vl) — G(’LLQ, 7}2)) s
Y2 — MM2A2
HR p(vl)) A1,ma (Al(f(UQ)) — )\1F<U27’U2))
= B ey (A1 (12)) = A F (2, v2) | (4.15)
< p1llp(v1) — p(v2)||
< pi&e|lvr — vl
HR;?Q”QUI) I hama (Ag(h(’l}g)) — )\QG(UQ, 'UQ))
= REZTE L e (A2(7(02)) = XaG(ug, v2)) | (4.16)
< p2llg(ur) — g(u2)||
< p2bullur — uz,
(| A1 (f(u1)) = Ar(f(u2)) = M (F(ug, v1) — F(ug,v1))]|*
< A1 (f(w1)) = A1 (f(u2))[|?
— g i (F(u1,v1) — Flug,v1), Jo(Ar (f(w1)) — Ai(f(u2))))
+ CAT |1 F(u1, v1) = Fug, v1)| (4.17)
< 675 llur — uall? — gAy (= o || F(ur, v1) — F(ug, v1)|?
+ Ballur — uzl|?) + cgAlof|lur — ua|?
(5131 + g o] — g\ B+ cq/\lal)”m — ug||?
and

Az (h(v1)) = Az (h(v2)) = Aa(G(ur, v1) — Glu, v)) ||
< [[A2(Rh(v1)) — A2(h(v2))]|?
— qA2(G(ur, v1) — G(ur, v2), Jo(Ar(h(v1)) — A2(h(v2))))
+ ¢gA3 |G (ug, v1) = Glug, v2)| (4.18)
< 83551 —v2]|? = gha (= a2||G(ur, v1) — Gur, v2)|?
+ Bollvr — v2||7) + cgAg05lor — 2|
(5282 + ghoaz0d — ghafBo + cq)\goz) [lvr — vl



A SYSTEM OF VARIATIONAL INCLUSIONS IN BANACH SPACES 689
It follows from (4.9)-(4.18) that
||S(’LL1, Ul) - S(”Qa UQ)H
< (1= pa)lJur — ual| + p1 (1 + gtas§ — gri + cqsf)
pTi

m(nAl(f(ul)) — A1 (f(u2))

— M (F(ur,v1) — F(ug,v2))||) + pap1&allvr — vz

Q=

flur — uall

s (4.19)
< {1 — p1 + 1 (1 + qt1s] —qr + cqs‘f) a

it
T = miAy

q—1

T A0

+ <M1P1€2 + /M) [vr — va]
7 —miA

Q=

(6751 + ghianof — ghiBr + cgAiof) * | |luy — us|

and
T (s, 01) — T(ug, vs)
< (1= po)llvr — vl + p2 (1 + gtasd — qra + Cqsgﬁnvl — va|
4 Lﬁ(||A2(h(vl)) — Aa(h(v2))

Yo — M2l

= X2(G(u1,v1) — G(U2>U2))||) + papaéallur — ual|
(4.20)

1
< {1 — po + po(1+ qtash — qro +cqs8)®

qg—1
_MeTy
Yo — Mao

qg—1
T8 Ao
+ </~L2P2§1 + 12222_22>

Q=

(6353 + qhac2b — qhaB2 + cgAiod) 7 [[|vg — va|

Now (4.19) and (4.20) jointly imply that

HS(ul,vl) — S(UQ,UQ)H + HT(ul,vl) - T(Ug,’Ug)H

Q=

< [1 — 1+ (1 +qt1s? —qr1 + cqs?)

g a q_a\q (4.21)
— (5151 +ghaio] —qhipr + Cq>\101) 7+ pop2ats
7 = miA

g—1
HaTo A0
Yo — M2y

] s —
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Q=

+ {1 — p2 + p2 (1 + qtash — qra + cqs8)

qg—1
T 1
T (5258 1 qAo06] — qhaBa + coMiod) T + pipro
Y2 — Moy
/“Tf_l)‘lel] l[or — s
Y1 — miAy

< k(fluy — wall + [lvr — val]).
Define || - || on E x E by
[(w, v)[[x = llull +llvll,  V(u,v) € ExE.
It is easy to see that (Ex E, ||-||1) is a Banach space. Define V : EXE — EXE
by
V(u,v) = (S(u,v),T(u,v)), Y(u,v)€ EXE. (4.22)
It follows from (4.3) and (4.21) that
IV (u1,v1) = V(uz, vl < Kl (ur,v1) — (u2,v2)1. (4.23)

That is, V : E x E — E x E is a contraction operator. Thus the Banach fixed
point theorem ensures that V' possesses a unique fixed (z,y) € E x E, that is,
(3.3) holds. In view of Lemma 3.1, (x,y) is the unique solution of the problem
(3.1).

On account of (4.3)-(4.5), (4.7), (4.8), (4.22) and (4.23), we deduce that

1(@nt1; Yns1) = (2, 9)
= [[ent1 = 2l + lynt1 = yll
< (L —an)lzn — 2l + anllS(@n, yn) = S(2,y)ll + llenll
+ (= 0)llyn = yll + bulIT (2, yn) = T2, y)[| + [|dn |
<max{l —ap, 1= b} ([[2n — x| + [[yn —yll)
+ max{an,bn}(||5(xn,yn) - S(x,y)” + ”T(xmyn) - T(z,y)”)
+ llenll + lldnl
< (1= min{an, bn}) [(@n, yn) = (2,9) |1
+ kmax{an, bp} | (n, yn) = (@ 9) |1 + llenll + [1dnl
< {1 = [min{an, by} — kmax{an, bp 1 (@0, yn) — (2, 9)l1
+ llenll + lldnll,  ¥n >0,
which together with (4.3), (4.5), (4.6) and Lemma 2.3 implies that {(z,, yn) }n>0

converges strongly to the unique solution (z,y) of the problem (3.1). This com-
pletes the proof. O
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