• Title/Summary/Keyword: iterative inversion method.

Search Result 51, Processing Time 0.018 seconds

Optimum Directivity Synthesis of Ultrasonic Transducers Using Direct Inversion in Combination with Iterative DFP Method

  • K. R. Cho;Kim, C. D.;T. Tsuchiya;Y. Kagawa
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.477-483
    • /
    • 2001
  • Optimum directivity synthesis of ultrasonic transducers in linear array is considered. To realize the desired directivity, a robust and efficient method is proposed which is the direct inversion combined with the iterative DFP (Davidon-Fletcher-Powell) method. A quasi-ideal beam with the beam width and the steering beam angle specified are chosen for the numerical demonstrations. The demonstration is then extended to the case of multi-beams. The proposed combination method shows quick convergence over the single LMS or DFP method at the expense of the system matrix inversion.

  • PDF

Iterative Least-Squares Method for Velocity Stack Inversion - Part A: IRLS method (속도중합역산을 위한 반복적 최소자승법 - Part A: IRLS 방법)

  • Ji Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.2
    • /
    • pp.163-169
    • /
    • 2005
  • Recently, the velocity stack domain is having an attention as a very useful domain for various processing in seismic data processing. In order to be used in many applications, the velocity stack should be obtained through an inversion method and the used inversion should have properties like the robustness to noise and the parsimony of velocity stack result. Iteratively Reweighted Least-Squares (IRLS) method is the one of the inversion methods that have such properties. This paper describes the theoretical background, implementation of the method, and examines the characteristics and limits of the IRLS method.

A Study on Interpretation of Gravity Data by using Iterative Inversion Methods (반복적(反復的) 역산법(逆算法)에 의(依)한 중력자료(重力資料)의 해석(解析)에 관(關)한 연구(硏究))

  • Roh, Cheol-Hwan;Yang, Sung-Jin;Shin, Chang-Soo
    • Economic and Environmental Geology
    • /
    • v.22 no.3
    • /
    • pp.267-276
    • /
    • 1989
  • This paper presents results of interpretaton of gravity data by iterative nonlinear inversion methods. The gravity data are obtained by a theoretical formula for two-dimensional 2-layer structure. Depths to the basement of the structure are determined from the gravity data by four interative inversion methods. The four inversion methods used here are the Gradient, Gauss-Newton, Newton-Raphson, and Full Newton methods. Inversions are performed by using different initial guesses of depth for the over-determined, even-determined, and under-determined cases. This study shows that the depth can be determined well by all of the methods and most efficiently by the Newton-Raphson method.

  • PDF

current profiles in a coated conductor with transport current (외부 전류가 흐를 때 초전도 선재에서의 전류 분포)

  • Yoo, Jae-Un;Lee, Sang-Moo;Jung, Ye-Hyun;Lee, Jae-Young;Youm, Do-Jun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.1-4
    • /
    • 2007
  • The current profiles in a coated conductor with transport current were calculated using an iterative inversion method from the data of the magnetic flux density profiles measured. The applied current was increased from 0 to 60 A by 10A step and decreased down to -60A by 20A step. The magnetic flux profiles were measured at a distance of 400 mm above the surface of the coated conductor using a scanning hall probe method. The current profiles calculated were very different from the Bean model: current density profile is not a constant in the critical region. However the aspect of the change of the current and magnetic flux density profiles in the case of decreasing applied current are similar to the theoretical calculations in Brandt's paper.

A comparative study of low-complexity MMSE signal detection for massive MIMO systems

  • Zhao, Shufeng;Shen, Bin;Hua, Quan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1504-1526
    • /
    • 2018
  • For uplink multi-user massive MIMO systems, conventional minimum mean square error (MMSE) linear detection method achieves near-optimal performance when the number of antennas at base station is much larger than that of the single-antenna users. However, MMSE detection involves complicated matrix inversion, thus making it cumbersome to be implemented cost-effectively and rapidly. In this paper, we first summarize in detail the state-of-the-art simplified MMSE detection algorithms that circumvent the complicated matrix inversion and hence reduce the computation complexity from ${\mathcal{O}}(K^3)$ to ${\mathcal{O}}(K^2)$ or ${\mathcal{O}}(NK)$ with some certain performance sacrifice. Meanwhile, we divide the simplified algorithms into two categories, namely the matrix inversion approximation and the classical iterative linear equation solving methods, and make comparisons between them in terms of detection performance and computation complexity. In order to further optimize the detection performance of the existing detection algorithms, we propose more proper solutions to set the initial values and relaxation parameters, and present a new way of reconstructing the exact effective noise variance to accelerate the convergence speed. Analysis and simulation results verify that with the help of proper initial values and parameters, the simplified matrix inversion based detection algorithms can achieve detection performance quite close to that of the ideal matrix inversion based MMSE algorithm with only a small number of series expansions or iterations.

A Study on Interpretation of Gravity Data on Two-Dimensional Geologic Structures by Iterative Nonlinear Inverse (반복적 비선형역산에 의한 2차원 지질구조의 중력자료 해석 연구)

  • Ko, Chin-Surk;Yang, Seung-Jin
    • Economic and Environmental Geology
    • /
    • v.27 no.5
    • /
    • pp.479-489
    • /
    • 1994
  • In this paper, the iterative least-squares inversion method is used to determine shapes and density contrasts of 2-D structures from the gravity data. The 2-D structures are represented by their cross-sections of N-sided polygons with density contrasts which are constant or varying with depth. Gravity data are calculated by theoretical formulas for the above structure models. The data are considered as observed ones and used for inversions. The inversions are performed by the following processes: I) polygon's vertices and density contrast are initially assumed, 2) gravity are calculated for the assumed model and error between the true (observed) and calculated gravity are determined, 3) new vertices and density contrast are determined from the error by using the damped least-squares inversion method, and 4) final model is determined when the error is very small. Results of this study show that the shape and density contrast of each model are accurately determined when the density contrast is constant or vertical density gradient is known. In case where the density gradient is unknown, the inversion gives incorrect results. But the shape and density gradient of the model are determined when the surface density contrast is known.

  • PDF

SVD Pseudo-inverse and Application to Image Reconstruction from Projections (SVD Pseudo-inverse를 이용한 영상 재구성)

  • 심영석;김성필
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.17 no.3
    • /
    • pp.20-25
    • /
    • 1980
  • A singular value decomposition (SVD) pseudo-inversion method has been applied to the image reconstruction from projections. This approach is relatively unknown and differs from conventionally used reconstructioll methods such as the Foxier convolution and iterative techniques. In this paper, two SVD pseudo-inversion methods have been discussed for the search of optimum reconstruction and restoration, one using truncated inverse filtering, the other scalar Wiener filtering. These methods partly overcome the ill-conditioned nature of restoration problems by trading off between noise and signal quality. To test the SVD pseudo-inversion method, simulations were performed from projection data obtained from a phantom using truncated inversefiltering. The results are presented together with some limitations particular to the applications of the method to the general class of 3-D image reconstruction and restoration.

  • PDF

Iterative Reconstruction of Multiple Cylinders Buried in the Lossy Half Space (손실 반공간에 묻힌 2차원 원통형 파이프의 검출 및 식별)

  • Kim, Jeong-Seok;Ra, Jung-Woong
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.173-176
    • /
    • 2001
  • Several dielectric as well as conducting cylinders buried in the lossy half space are reconstructed from the scattered fields measured along the interface between the air and the lossy ground. Iterative inversion method by using the hybrid optimization algorithm combining the genetic and the Levenberg-Marquardt algorithm enables us to find the positions, the sizes, and the medium parameters such as the permittivities and the conductivities of the buried cylinders as well as those of the background lossy half space. Illposedness of the inversion caused by the errors in the measured scattered fields are regularized by filtering the evanescent modes of the scattered fields out.

  • PDF

Iterative Teconstruction of a Cylinder Buried in the Lossy Half Space (손실 반공간에 묻힌 원통형 산란체의 검출 및 영상제구성에 의한 식별)

  • 김정석;나정웅
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.6
    • /
    • pp.939-945
    • /
    • 2000
  • A cylindrical object buried in the lossy half space is reconstructed from the measured scattered fields above the lossy half space. The position, the size and the medium parameters i.e. relative dielectric constants and conductivity of the buried object as well as the medium parameters of the background lossy half space are obtained from the scattered fields by using the iterative inversion method and the optimization hybrid algorithm combining the genetic algorithm and the Levenberg-Marquardt algorithm. Illposedness of the inversion due to the measurement errors in the scattered fields are regularized by filtering out the evanescent modes in the spatial frequency spectrum domain.

  • PDF

Asymptotic Output Tracking of Non-minimum Phase Nonlinear Systems through Learning Based Inversion (학습제어를 이용한 비최소 위상 비선형 시스템의 점근적 추종)

  • Kim, Nam Guk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.32-42
    • /
    • 2022
  • Asymptotic tracking of a non-minimum phase nonlinear system has been a popular topic in control theory and application. In this paper, we propose a new control scheme to achieve asymptotic output tracking in anon-minimum phase nonlinear system for periodic trajectories through an iterative learning control with the stable inversion. The proposed design method is robust to parameter uncertainties and periodic external disturbances since it is based on iterative learning. The performance of the proposed algorithm was demonstrated through the simulation results using a typical non-minimum nonlinear system of an inverted pendulum on a cart.