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Abstract 
 

For uplink multi-user massive MIMO systems, conventional minimum mean square error 
(MMSE) linear detection method achieves near-optimal performance when the number of 
antennas at base station is much larger than that of the single-antenna users. However, MMSE 
detection involves complicated matrix inversion, thus making it cumbersome to be 
implemented cost-effectively and rapidly. In this paper, we first summarize in detail the 
state-of-the-art simplified MMSE detection algorithms that circumvent the complicated 
matrix inversion and hence reduce the computation complexity from  3( )K  to  2( )K  or 

( )NK   with some certain performance sacrifice. Meanwhile, we divide the simplified 
algorithms into two categories, namely the matrix inversion approximation and the classical 
iterative linear equation solving methods, and make comparisons between them in terms of 
detection performance and computation complexity. In order to further optimize the detection 
performance of the existing detection algorithms, we propose more proper solutions to set the 
initial values and relaxation parameters, and present a new way of reconstructing the exact 
effective noise variance to accelerate the convergence speed. Analysis and simulation results 
verify that with the help of proper initial values and parameters, the simplified matrix 
inversion based detection algorithms can achieve detection performance quite close to that of 
the ideal matrix inversion based MMSE algorithm with only a small number of series 
expansions or iterations. 
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1. Introduction 

Multiple-input multiple-output (MIMO) technology has been widely studied during the last 
two decades and already utilized in many wireless standards, such as LTE/LTE-A cellular 
network and IEEE 802.11n wireless LAN system, since it can significantly enhance the 
capacity and reliability of wireless systems on the premise of demanding no additional 
bandwidth or transmit power[1]-[2]. For conventional MIMO systems, the base station (BS) is 
typically equipped with only a few antennas simultaneously serving multiple users within the 
same time-frequency resource, and the corresponding improvement in spectral efficiency is 
thus still relatively modest [3]. In order to exploit the resources more efficiently, ameliorate 
the transmission rate and relieve the system interference, an emerging technology referred to 
as massive MIMO, which entails ten to hundreds of antennas at BS, was proposed in recent 
years [4]-[5]. Extra antennas amounted at BS help focus energy into ever-smaller regions of 
space to bring huge improvements in throughput and radiated energy efficiency [6]. Massive 
MIMO scales up conventional MIMO by possibly orders of magnitude and has been regarded 
as an enabler for the development of future broadband wireless networks [7]-[8]. 

However, some challenging problems have to be solved to realize such attractive merits of 
massive MIMO in practice [9]. One of them is developing low-complexity signal detection 
algorithms in uplink when the number of single-antenna users is becoming extremely large [5]. 
A number of signal detection algorithms that work efficiently in conventional small-scale 
MIMO systems fail in massive MIMO systems on account of computational complexity or 
performance. For example, the complexity of maximum likelihood (ML) detector, which is 
optimal among the hard decision methods, grows exponentially with the modulation order and 
the number of transmit antennas. The tabu search (TS) [10] and the fixed-complexity sphere 
decoding (FSD) [11] algorithms were put forward to obtain the close optimal ML detection 
performance with reduced complexity, but their complexity becomes not affordable when the 
configuration of MIMO system is large or the modulation order is high [12]. Encountering the 
tremendously enlarged number of antennas, one has no choice but to turn to linear signal 
detection algorithms on the basis of zero-forcing (ZF) and minimum mean square error 
(MMSE) criteria, because of their relatively low complexity and satisfactory bit error rate 
(BER) performance for multiuser massive MIMO systems [5]. However, these methods 
inevitably involve complicated matrix inversion due to the large dimensions of massive 
MIMO systems, resulting in highly burdensome complexity in practice. Very recently, many 
efforts have been dedicated to relieving the complexity of matrix inversion for practical 
detector design. 

Neumann series expansion was proposed in [13] to replace the matrix inversion in MMSE 
detection, the performance and computational complexity of which scaled with the number of 
selected terms of Neumann series. However, when the number of selected terms is larger than 
two, the complexity of Neumann series expansion method was almost the same as that of exact 
matrix inversion. With an aim to decrease the complexity when the number of selected terms is 
three, the modified Neumann series expansion was proposed in [14]. In [15], multistage linear 
receiver (MLR) was utilized to approximate the exact matrix inversion and it has been shown 
that by using the optimized coefficient at each term it performs well with low number of terms. 
Different from the Neumann series expansion, Newton iterative approximation was proposed 
to approach the matrix inversion by a certain number of iterations in [16]. 

Unlike the above-mentioned methods mainly relying on the philosophy of matrix inversion 
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approximation, Richardson iteration (RI) method was proposed in [17] to avoid complicated 
matrix inversion by directly solving the linear equation of signal detection in an iterative 
manner, but there is plenty of room to improve the tradeoff between the signal detection 
performance and computational complexity. In [18] and [19], successive over-relaxation 
(SOR) and symmetric successive over-relaxation (SSOR) methods were respectively 
proposed to refrain from matrix inversion and the SSOR is an improved version of SOR. In 
addition, the work in [20] put forward conjugate gradient (CG) method to shun the costly 
inversion. Approximate message passing (AMP) method was proposed in [21] for iterative 
massive MIMO detection and decoding, but it still counted on the iterative updating of mean 
and variance between symbol nodes and observation nodes, ending up with a relatively 
complex process. 

In this paper, aiming to further relieve the complexity of the aforementioned existing 
algorithms, we first apply the MLR method as the first iteration of Newton iterative 
approximation to reduce the complexity, and subsequently propose a weighted symmetric 
SOR (WSSOR) method on the basis of SOR and SSOR method to estimate the transmitted 
vector. Moreover, considering the series of approximate message passing (AMP) algorithms 
were initially proposed for solving a least absolute shrinkage and selection operator (LASSO) 
problem in the domain of compression sensing [22]-[23], we present a new set of message 
passing rules for the AMP method to obtain a simplified AMP (SAMP) algorithm. The SAMP 
method avoids the iterative updating of the mean and variance parameters in detection, which 
has a substantial reduction in computational complexity and still maintains good performance. 
Based on the eigenvalue decomposition of the interference and noise covariance matrix, the 
conventional minimum mean square error-interference rejection combining (MMSE-IRC) signal 
detection algorithm was proposed in [24] to exploit a dimension-reduction technique to reduce 
the computation-intensive of the matrix inversion compared with the conventional algorithm. 

In order to give a more comprehensive study of the state-of-the-art simplified algorithms for 
implementing the MMSE detector, we classify these simplified matrix inversion algorithms 
into two categories which are respectively based on approximate matrix inversion and the 
classical iterative linear equation solving method. A detailed comparative analysis are carried 
out among them. In the sequel, we also address a variety of optimization schemes for the 
existing algorithms, such as presenting a more proper solution of initial values and relaxation 
parameter, reconstructing the effective noise variance. Finally, the performance and 
computational complexity of each type of the detection algorithms are verified by computer 
simulations. Among the simplified algorithms based on matrix inversion approximation, the 
MLR method is optimal; as for the simplified algorithms based on linear equation solving, the 
SAMP method and the SSOR iterative algorithm are the most desirable algorithms and the 
SAMP method achieves the best trade-off between performance and computational 
complexity over all the simplified algorithms. 

The rest of paper is organized as follows: Section II introduces the typical massive MIMO 
system model. Low-complexity signal detectors based on polynomial expansion and linear 
equation solving are presented in Section III and Section IV respectively. Section V specifies 
the optimization schemes for the simplified algorithms. The simulation results are presented in 
Section VI to illustrate the effectiveness of the proposed detectors. Section VII provides a 
summary of our findings and concludes the paper. 

Notations: Lower-case and upper-case boldface letters are used to represent column vectors 
and matrices, respectively. The superscripts T , * , H  and -1 stand for the transpose, 
conjugate, conjugate-transpose and inverse of matrix, respectively. Tr(.)  denotes the matrix 
trace and KI  is a K K×  identity matrix. The operator ⋅‖‖ denotes the matrix norm and (A,B) 
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represents an inner product operation. ( )ℜ ⋅  and ( )ℑ ⋅  are the real and imaginary parts of a 
complex number, respectively. 

2. Massive MIMO System Model 
We consider a well-known uplink multiuser massive MIMO system which is composed of N  
receive antennas at BS and K  single-antenna user equipments. Usually we have the system 
configuration as N K≥ , e.g., 128N =  and 16K = . Let 1 2[ , , , ]T

c Ks s s= s  represent the 
transmit vector consisting of the modulation symbols transmitted simultaneously by all users 
in the same time-frequency resources, where ks ∈  is the symbol transmitted from the k-th 
user,   is the modulation alphabet, and ks  is assumed to be with zero mean and finite 
variance 2

ss . Let N K
c

×∈H  represent the channel coefficient matrix, whose entries are 
assumed to be independently and identically distributed with zero mean and variance 2

hσ . 
Therefore, the received 1N ×  signal vector cy  at BS can be denoted as 
 

 ,c c c c= +y H s n                                                           (1) 
 
where subscript c stands for the complex-valued, and cn  is an 1N ×  additive white Gaussian 
noise (AWGN) vector whose entries follow the complex Gaussian distribution 2(0, )zσ . 

Focusing on the uplink signal detection, when the subscript is dropped for convenience, we 
may rewrite the complex-valued system model of equation (1) in the real domain as 
 

 ,= +y Hs n                                                              (2) 
 
where 2 2N K×∈H , 2N∈ , and 2N∈n , which are respectively given by 
 

 
( ) ( ) ( ) ( ) ( )

, , , .
( ) ( ) ( ) ( ) ( )

c c c c c

c c c c c

ℜ −ℑ ℜ ℜ ℜ       
= = = =       ℑ ℜ ℑ ℑ ℑ       

H H y s n
H y s n

H H y s n
                 (3) 

 
The task of massive MIMO signal detection at BS is to detect the transmitted signal vector 

s  on the basis of the received signal vector y , and the estimation of ŝ  coming from K  
different users can be achieved in MMSE detection scheme as 
 

 2 1 1
2K MFˆ ( ) ,H Hσ − −= + =σ H H I H y W y                                        (4) 

 
where the estimated variance 2σ  is assumed as 2 2 2/ ( )z h ss s s , the matched-filter output MFy  
can be interpreted as MF ,H=y H y  and the MMSE filtering matrix W  is described as 
 

 2
2K ,σ= +W G I                                                           (5) 

 
where H=G H H  stands for the Gram matrix. It is worth noting that the exact computational 
complexity of matrix inversion 1−W  requires 3( )K , which increases exponentially with the 
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number of single-antenna users. 
Due to the fact that W  approaches the diagonal matrix when the number of antennas at BS 

is much larger than the number of singer-antenna users ( )N K  in massive MIMO systems, 
it has been suggested that we can simply approximate the matrix inversion by the inversion of 
its diagonal elements, meaning that we approximate W  as 
 

 2
2K ,H σ≈ +W D D I                                                        (6) 

 
where D  is the main diagonal of W . However, this rough approximation method will cause a 
huge performance loss in actual system configuration. 

3. Low-Complexity signal detector based on approximate matrix 
inversion 

A key property of massive MIMO systems is the orthogonality among channels when the 
number of antennas at BS is much larger than that of the single-antenna users ( )N K . 
Instead of dealing with the exact matrix inversion operation, which has a prohibitively high 
complexity, and taking advantage of the channel orthogonal property in MMSE detection, we 
can simply approximate the matrix inverse by the inversion of its diagonal elements only, i.e. 

1 1− −≈W D . However, in actual system configuration, this rough approximation method causes 
a huge performance degradation. Hence, in this section, we will mainly introduce some 
simplified algorithms based on the philosophy of matrix inversion approximation to cut down 
the computational complexity effectively. 

3.1 Neumann series expansion 
According to the Neumann series expansion [13], the inversion of matrix W  can be simplified 
as 
 

 ( )1 1 1

0
( ) ,

n

n

∞
− − −

=

= −∑W X X W X                                                (7) 

 
where the series expansion is guaranteed to converge if 1

2K 2K( )−− =I X W 0  is fulfilled. By 
decomposing W  such that = +W D E , where D  and E  are the main diagonal and hollow 
component of W  respectively, we can compute the first t terms of the Neumann series 
expansion as follows: 
 

 ( )
1

1 1 1

0
,

t n

n

−
− − −

=

= −∑W D E D                                                    (8) 

 
where we replace X  in (7) with D . It is worth mentioning that if 1

2Klim( )t

t

−

→∞
− =D E 0 , the 

series expansion in (8) holds. 
 For small values of t , the Neumann series expansion can be computed at low 

computational complexity. For instance, we can obtain 1 1
1
− −=W D  when 1t = , whose 

computational complexity only scales with ( )K  operations; this is a significant complexity 
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reduction in contrast to the 3( )K  required by dealing with MMSE exact matrix inversion. 
When 2t = , we obtain 1 1 1 1

2
− − − −= −W D D ED , whose computational complexity is reduced to 

2( )K . When 3t = ,  we have 1 1 1 1 1 1 1
3
− − − − − − −= − −W D D ED D ED ED , whose complexity 

scales with 3( )K , which is the same as that of an exact matrix inversion in MMSE detector. 
To alleviate the computation complexity of the Neumann series expansion with 3t = , the 

work in [14] proposed a modified Neumann series expansion which leverages that 1−W  has 
the property of being diagonally dominant. The magnitude of each non-diagonal element 

,| |i jX  in matrix is smaller than that in 1−D  and 1 1− −D ED . In a nutshell, the magnitude of each 
non-diagonal element ,i jX  where | | 0i j− >  tends to be zero. On account of the above facts, the 
modified Neumann series expansion can be expressed as follows: 
 

 1 1 1 1 ,− − − −= − + W D D ED X                                                        (9) 

 
1

diag( ) diag ( ), ( | |),
T

T T i j= + > −∑X X X                                      (10) 

 
where X  represents the approximated X  matrix and T  is the predefined offset between the 
row index ( i ) and the column index ( j ) of ,i jX . Since the modified approach uses only 
numerically dominant elements of channel matrix for a low complexity matrix inversion, the 
computational complexity of the modified Neumann series expansion is lowered to 2( )K . 

3.2 Multistage linear receiver 
Although Neumann series expansion [13] and modified Neumann series expansion [14] were 
proposed to reduce the computational complexity in some sense, their performance still has 
much room for improvement. Motivated by this fact, the multistage linear receiver (MLR) was 
introduced to approximate the inversion of complicated matrix [15] and the pivotal idea is to 
substitute the matrix inversion with a polynomial by which (6) can be represented by 
 

 ( )1 2 1
2K

0
( ) ,

t
s

s
s

s ω− −

=

= + = ∑W G I G                                       (11) 

 
where sω  is the optimal weight of term s  and t  is the number of terms we choose. 

 Let 0 1[ , , , , , ]T
s tω ω ω ω=  ω , and the optimal weight vector can be denoted as 

 
 1 ,−=ω Φ c                                                          (12) 

 
where Φ  is a ( 1) ( 1)t t+ × +  square matrix with elements 
 

 2 2 1
, Tr ( ) Tr ( ) ,i j i j

i j σ+ + + +   Φ = +   G G                                     (13) 
 
and c  is a ( 1) 1t + ×  column vector with elements 
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 1Tr ( ) .i
ic + =  G                                                        (14) 

 
For the MLR method represented by equation (11) and (12), the computation complexity of 

calculating the optimal weights is 2( 1)t + , because it refers to a 1t+  dimensional matrix 
inversion. In addition, the computation complexity of constructing the MLR method can be 
reduced to 24tK   by employing recursive method and we define the recursive vector as 
 

 ( ) MF ,s
s sω=r G y                                                  (15) 

 1
1 .s

s s
s

ω
ω
+

+
 

=  
 

r G r                                                  (16) 

 
It is clear that each time we only require to calculate a vector-matrix multiplication. Thus, 

the total computation complexity of the MLR method is 2 2( 1) 4t tK+ + , whose computational 
complexity is decreased to 2( )K . 

3.3 Newton iterative approximation 
As can be seen from the above description, the core ideas underlying Neumann series 
expansion and MLR are both mathematically based on polynomial expansion. It is 
coincidentally interesting that the Newton iterative approximation proposed in [16] also 
utilized iterative method to approximate 1−W . The proposed algorithm originates from the 
Taylor series which only takes the 1-order into consideration, and therefore improve the 
precision by increasing the iterative order. 

If 1
0
−W  is the first time estimation of 1−W , then the t-th iterative estimation can be 

represented by 
 

 ( )1 1 1
1 2K 12 .t t t

− − −
− −= −W W I WW                                            (17) 

 
In order to ensure convergence, 1

0
−W  must meet the condition 

 
 1

2K 0 1,−− <‖ ‖I WW                                                (18) 
 
then 1

t
−W  in equation (17) quadratically converges to 1−W . 

From equation (17), we see that the computational complexity of Newton method is 
extremely high, which is 38 4K K+  for each iteration, because the initial value of Newton 
method is related to the matrix inversion 1

0
−W . Therefore, an appropriate selection of initial 

input 1
0
−W  will obviously affect the approximation accuracy. Inspired by Neumann series 

expansion, we can decompose = +W D E  and use 1−D   as the initial value. We will find that 
the first two iterations are duplicate as Neumann series expansion. 

 The MLR method can be employed to calculate the first term for the initial value of Newton 
method as well, and we select the first term of MLR as the initial value for Newton method, 
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 1
0 0 1( ),Hω ω− = +W H H                                            (19) 

 
where the computational complexity is also very high compared with the initial value 1−D . 
However, with this initial value in equation (19), we can achieve the BER close to that of exact 
MMSE detection performance by just two iterations. 

 By nature of its iterative calculation mechanism, the convergence rate of Newton iterative 
approximation is fast, and meanwhile the precision and complexity can be merely dominated 
by the number of iterations. 

4. Low-Complexity signal detector based on classical iterative equation 
solving method 

For uplink massive MIMO systems, the MMSE filtering matrix W  is symmetric positive 
definite when the number of antennas at BS is much larger than that of the single-antenna users 
( N K ), as proved in [17]-[18]. Inspired by this special property, equation (4) can be 
rewritten as MFˆ =Ws y , which converts the simplified matrix inversion problem into the one of 
linear equation solving 
 

 ,=Ax b                                                              (20) 
 
where A  denotes the symmetric positive definite matrix, x  is the 1N ×  solution vector, and 
b  denotes the 1N ×  measurement observation vector. 

4.1 Richardson iterative method 
Observing that the MMSE filtering matrix W  is symmetric positive definite, we can exploit 
the Richardson method in [17] to efficiently solve equation (4) in an iterative manner to avoid 
the complicated matrix inversion. The Richardson iteration can be formulated as 
 

 ( )( 1) ( ) ( )
RIˆ ˆ ˆ ,t t tη+ = + −x x b Ax                                               (21) 

 
where the superscript t  represents the number of iterations, and RIη  denotes the relaxation 
parameter of Richardson method. 

According to the above description, we can use the Richardson method to estimate the 
transmitted signal vector ŝ , without resorting to matrix inversion at all, as below 
 

 ( )( 1) ( ) ( )
RI MFˆ ˆ ˆ ,t t tη+ = + −s s y Ws                                             (22) 

 
where (0)ŝ  denotes the initial solution, which may be dwelled on later in Section IV. The 
relaxation parameter RIη  imposes a strong impact on the convergence of Richardson method, 
and it always satisfies RI 10 2 /η λ< < , where 1λ  is the largest eigenvalue of the symmetric 
positive definite matrix W . 

 In accordance with (22), it can be clearly seen that the t-th iteration of the Richardson 
method requires one multiplication of a 2 2K K×  matrix W  and a 2 1K×  vector ( )ˆ ts , as well as 
one multiplication of a constant relaxation parameter ω  and a 2 1K×  vector ( )

MF ˆ )( t−y Ws , and 
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thus the total computational complexity is 24 2K K+  for each iteration. 

4.2 Successive over-relaxation method 
Similar to the Richardson method, the successive over-relaxation (SOR) method is also 
efficient to solve the linear equation in an inversion-less way. It greatly helps one avoid the 
complicated matrix inversion and it is entirely different from the traditional approaches that 
directly computes 1−A b  to obtain x  in equation (20). Since the matrix A  is symmetric 
positive definite, we can decompose it into a diagonal matrix AD , a strictly lower triangular 
matrix AL , and a strictly upper triangular matrix H

AL . Then the SOR method can be 
represented by 
 

 
1

( 1) ( )
A A A A

SOR SOR

1 1( 1) ˆ ,ˆ t H t

η η

−
+     

= + − − +    
     

x xL D D L b                          (23) 

 
where the superscript t  stands for the number of iterations, and SORη  represents the relaxation 
parameter of SOR method, which plays an important role in convergence speed. It is 
noteworthy that the SOR method is equivalent to the well known Gauss-Seidel method [25] 
when 1ω = , which implies that the Gauss-Seidel method is a special case of the SOR method. 

Applying the SOR method mentioned above, W  can be decomposed as 
 

 ,H= + +W D L L                                                         (24) 
 
where D , L , and HL  denote the diagonal matrix, the strictly lower triangular matrix, and the 
strictly upper triangular matrix of W , respectively. Thus, the transmitted signal vector in the 
t -th iteration is 
 

 
1

( 1) ( )
MF

SOR SOR

1 1ˆ ˆ( 1) ,t H t

η η

−
+     

= + − − +    
     

s L D D L s y                              (25) 

 
where (0)ŝ  denotes the initial solution, and it is set as a 2 1K×  zero vector in generality. 

Consequently, the solution to the signal problem in equation (4) can be solved by SOR 
method according to 
 

 ( 1) ( )
MF

SOR SOR

1 1ˆ ˆ1 .t H t

η η
+     

+ = + − −         
L D s y D L s                             (26) 

 
Due to the fact that ( SOR1/η+L D ) is a lower triangular matrix, ( 1)t+s  can be obtained by 

solving equation (26) with low complexity. It can be found that the complexity of the t-th 
iteration of SOR method comes from the computation in equation (26), whose solution can be 
denoted as 
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 ( 1) ( ) ( 1) ( )SOR
MF , ,

SOR ,

1ˆ ˆ ˆ ˆ1 ,t t m t t
m m m k k m k k

k m k mm m
s s y W s W s

W
η

η
+ +

< >

   
= − + − −   

  
∑ ∑                    (27) 

 
where ( 1)ˆ t

ms + , ( )ˆ t
ms , and MF

my  represent the m-th element of, ( )ˆ ts , and MFy , respectively, and 
,m kW  represents the ( , )m k -th entry of W . It is obvious that the required number of 

multiplications in computing ( )
SOR ˆ(1 ) t

mη− s  and ( 1) ( 1) ( ) ( )SOR
MF , ,

,

ˆ ˆ( )m t t t t
m k k m m k k m

k m m km m
W s W s

W
η + +

< >

− −∑ ∑y s s  

are 1 and 22 1K + , respectively. Since there are 2K  elements in ( 1)t+s  and the overall required 
number of multiplication is 24 4K K+  for each iteration. 

4.3 Symmetric successive over-relaxation method 
The SOR method works effectively in lowering the complexity with satisfactory performance. 
However, when we encounter more practically complex problems, highly tranglesome 
eigenvalue needs to be analyzed. Therefore, it was proposed in [19] to employ Chebyshev 
acceleration and symmetric successive over-relaxation (SSOR) approach to solve the problem. 
The SSOR method is a symmetry version of the SOR method, whose basic idea is to combine 
SOR with the inversed order SOR as one unified method. If, as usual, the matrix is 
decomposed as H= + +W D L L , the SSOR method for solving the equation MFˆ =Ws y  can be 
carried out in the following two steps: 

 Compute the previous half iteration which is identical with the SOR iteration in 
[18] by 
 

 ( ) ( 1/2) ( ) ( )
SSOR SSOR SSOR SSOR MFˆ ˆ ˆ(1 ) ,t t H tη η η η++ = − − +s s sD L D L y                     (28) 

 
 Compute the latter half iteration which is the SOR method with the equations taken 

in reverse order by 
 

 ( ) ( 1) ( 1/2) ( 1/2)
SSOR SSOR SSOR SSOR MF(1 )ˆ ˆ ˆ ,H t t H tη η η η+ + ++ = − − +D L Ds ys L s                (29) 

 
where ( )ˆ ts  represents the vector that needs to be estimated in the t-th iteration of SSOR 
method, and (0)ŝ  denotes the initial solution of SSOR, which is usually chosen as a 2 1K ×  
zero vector without loss of generality. 

Compared with SOR, the SSOR method has two advantages. Firstly, the structure of SSOR 
method is symmetric, which implies that the convergence rate of SSOR can be improved by 
using Chebyshev acceleration. Secondly, a simple and quantified relaxation parameter can be 
employed to approximate a precise relaxation parameter with negligible performance loss, 
when we consider the convergence rate of SSOR method is not very sensitive to the relaxation 
parameter SSORη . A detailed description of the relaxation parameters is given in the 
subsequent subsection. 

On the basis of equation (28) and (29), it is obvious that the computation of each element 
of ( 1/2)ˆ t+s  and ( 1)ˆ t+s  requires 1K +  times of multiplications. Since there are K  elements in 
them, the required number of multiplications of SSOR is 2(8 8 )t K K+ . 
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Based on the idea of iterative SOR and SSOR, we are able to employ an averaging weight 
to deal with the vector derived by the iteration in equation (25) and the vector derived by 
iteration in equation (29). The weighted symmetric successive over-relaxation (WSSOR) 
method can be described as 
 

 ( 1) ( )ˆ ,ˆt t+ = +Bs Cs                                                        (30) 
 
where 

1 1 1 1
WSSOR WSSOR WSSOR WSSOR WSSOR WSSOR

1 1
WSSOR WSSOR WSSOR WSSOR

WSSOR WSSOR MF

(1 )(( ) ( )) (( ) ) ( )

(1 )( ) ( ) ,
( ) ,

H H H

H H

θ η η η θη η η

η η η η
η η

− − − −

− −

= − + − + + + − +

+ − + + +
= +

B D L D L D D L L D L L

D L D D L L
C D L y

and the weighting factor is [0,1]θ ∈ . 

4.4 Conjugate gradient algorithm 
In this subsection, based on the significant channel characteristic exhibited in massive MIMO, 
conjugate gradient (CG) method was employed in [20] to iteratively achieve the MMSE 
estimate without matrix inversion and the transmitted signal vector can be obtained as 
 

 ( 1) ( ) ( ) ( )ˆ ˆ ,t t t tδ+ = + ps s                                                     (31) 
 
where (0)ŝ  is the initial vector of CG method, which is usually selected as a zero vector, ( )tδ  is 
a scalar parameter, and ( )tp  is the conjugate direction with regard to , i.e., 
 

 ( ) ( )( ) ,t H j for t j=/p Wp                                                (32) 
 

Let ( )tr  represent the estimate error residual in the -th iteration, described as 
 

 ( ) ( )
MF ˆ .t t= −r y Ws                                                       (33) 

 
By reason that ( )tp  is the conjugate direction with respect to W , it can be represented as 

 

 
( ) ( )

( ) ( ) ( )
( ) ( )

( , ) .
( , )

k t
t t k

k k
k t<

= −∑ p Wrp r p
p Wp

                                           (34) 

 
Provided that we have 

 

 
( )

( )

( ) ( )
MF

( 1) ( 1) ( 1)
MF

1 ( 1) ( 1)
MF

( 1) ( 1) ( 1)

ˆ

ˆ

ˆ

,

t t

t t t

t t t

t t t

δ

δ

δ

− − −

− − −

− − −

= −

= − +

= − −

= −

r y Ws

y W s p

y Ws Wp

r Wp

                                             (35) 

 
we can derive from the above formula 
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( 1)
( 1) .

t t
t
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−
−

−

−
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r rWp                                                      (36) 

 
Since W  is Hermitian positive definite, we have 

 

 

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( 1)
( )

( )

( ) ( ) ( ) ( 1)
( )

, ,

,

1 , , .

t t t t

j j
t

j

t j t j
j

δ

δ

+

+

=

 −
=  
 

 = − 

Wr p r Wp

r rr

r r r r

                                    (37) 

 
In accordance with [26, Theorem 10.2.3], we have 

 
 ( )( ) ( ), 0, if ,t j t j= =/r r                                                  (38) 

 
then, (37) can be rewritten as 
 

 ( )( ) ( ), 0, if 1.t j j t= < −Wr p                                               (39) 
 

Hence, by substituting (39) into (34), ( )tp  can be further deduced as 
 

 
( )
( )

( 1) ( )
( ) ( )

( 1) ( 1)

,
.

,

t t
t t

t t

−

− −
= −

p Wr
p r

p Wp
                                                (40) 

 
If we define 

 

 
( )
( )

( )
( )

( ) ( 1) ( 1) ( )
( )

( ) ( ) ( ) ( 1)

, ,
,

, ,

t t t t
t

t t t t
ζ

+ +

−
− =

p Wr r Wp

p Wp p Wp
                                      (41) 

 
then, equation (40) can be rewritten as 
 

 ( ) ( ) ( 1) ( 1) ,t t t tζ − −= +p r p                                                    (42) 
 
where (0)p  stands for the initial search direction which is usually selected to be (0)r  in general 
case. 

Aiming to reduce the computational complexity, we can choose ( )tδ  as 
 

 
( )
( )

( ) ( )
( )

( ) ( )

,
.

,

t t
t

t t
δ =

r r

r Wp
                                                      (43) 
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From the above analysis, we can conclude that the computational complexity in the -th 
iteration consists of computing ( )tδ , ( 1)t+r , ( 1)ˆ t+s , ( 1)t+p  and ( )tζ . Computing ( )tδ  and ( 1)t+r  
involves 22 4K K+  and 22 2K K+ , respectively. In addition, 2K  times of multiplication are 
required to compute ( 1)ˆ t+s  and ( 1)t+p , respectively. Calculating ( )tζ  requires 4K  times of 
multiplication. To sum up, totally 24 14K K+  times of multiplication are required for each 
iteration of CG method. 

4.5 Simplified approximate message passing method 
It is noteworthy that a priori knowledge of the distribution of different input signals should be 
taken into account in the derivation process when conventional AMP algorithm is used to 
solve the LASSO problem in the field of compressive sensing, and consequently the algorithm 
may be limited by the distribution of the input signal. As for the MMSE detector, it does not 
consider the exact a priori information of statistical distribution of the received signal, which is 
usually assumed to be Gaussian. Hence, utilizing the SAMP method to estimate the 
transmitted signal vector ŝ  can be presented by 
 

 ( )( ) ( ) ( ) ( 1)ˆ ˆ ,t t H t tγ −= +s H z s                                                 (44) 

 ( ) ( 1) ( 1) ( 1)ˆ ,t t t tβγ− − −= − +z y Hs r                                             (45) 
 
where system configuration parameter /K Nβ = , ( )ˆ ts  denotes the estimated vector in the t-th 
iteration of SAMP method, and ( )tz  is the message passing parameter in the t -th iteration. The 
message passing term ( 1) ( 1)t tβγ − −r approximates the combined effect on the reconstruction of 
the passing NK  messages in the full message passing algorithm. The coefficient ( )tγ  denotes 
the soft thresholding value in the -th iteration, which determines the convergence speed by 
constructing a similar coefficient form of signal-to-noise ratio that can be expressed as 
 

 
2

( )
2 ( ) ,t s

t
s

s
γ

s α
=

+
                                                        (46) 

 
where ( )tα  denotes the effective noise variance in the t-th iteration of SAMP method, which 
can effectively control the soft threshold effect of ( )tγ  in equation (44), and improve the 
detection performance and convergence rate of SAMP method. 

The SAMP method we propose in this paper is very attractive because it requires neither 
iteratively updating the mean and variance nor approximating the complicated matrix 
inversion for solving the linear equation. It just demands simple operations on the matrix H  
and HH .  In terms of complexity, the SAMP method only costs ( )NK  in each iteration. In 
contrast, it is worth reminding that computing the MMSE exact matrix inversion requires a 
cubic computation complexity 3( )K .  

The computational complexity and performance of all the aforementioned simplified matrix 
inversion algorithms are compared and analyzed in Table 1. Since both the conventional 
MMSE algorithm and its common simplified algorithms need to compute W  and MFy , 
computation analysis is not given for obtaining them, and thus an emphasis is made on 
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discussing the iteration process, and evaluating it in terms of the required number of 
multiplications in acquiring the simplified matrix inversion.  

 
Table 1. The comparative analysis of detection performance and computational complexity 

ALGORITHM CORE FORMULA FORMULA 
NUMBER 

PERFORMANCE 
(In descending 

order) 
COMPLEXITY 

MMSE 2
2K ,σ= +W G I  (5) OPTIMAL 3( )K  

Simplified 
approximate 

message 
passing 

[22](SAMP) 

( )( ) ( ) ( ) ( 1)ˆ ˆ ,t t H t tγ −= +s H z s  
( ) ( 1) ( 1) ( 1)ˆ ,t t t tβγ− − −= − +z y Hs r  

(44) 
(45) SUB-OPTIMAL ( )NK  

Multistage 
linear receiver 

[15](MLR) ( )

1 2 1
2K

0

( )
t

s
s

s

s

ω

− −

=

= +

=∑
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G
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successive 

over-relaxation
[19](SSOR) 
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SSOR SSOR
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SSOR SSOR MF                                   
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ˆ

t t

H t

η η

η η
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− +
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SSOR SSOR
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H t t

H t

η η

η η
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− +
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(28) 
(29) SUB-OPTIMAL 2( )K  

Successive 
over-relaxation 

[18](SOR) 

( 1) 1 ( )
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   
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(23) BETTER 2( )K  

Newton 
Iterative 

Approximation 
[16](NT) 

( )1 1 1
1 2K 12t t t

− − −
− −= −W W I WW  (17) BETTER 2( )K  

Conjugate 
gradient 
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( ) ( ) ( )

( ) ( )
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k t<
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(31) 
(34) 
(43) 

BETTER 2( )K  

Richardson 
iterative 
[17](RI) 

( )( 1) ( ) ( )
RI MFˆ ˆ ˆt t tη+ = + −Wsys s  (22) GOOD 2( )K  

Neumann 
Series 

Expansion 
[13](NI) 

1
1 1 1

0
( )

t
n

n

−
− − −

=

= −∑W D E D  (8) NORMAL 
1, ( )t K=   

22, ( )t K=   
33, ( )t K=   

Diagona 
Approximation 

2
2K

H σ= +W D D I  (6) WORST ( )K  

 
The computation complexity comparison among all simplified algorithms is shown in Fig.1. 

It is clear that the computational complexity of all the simplified algorithms increases when 
the number of users and number of iterations or expansion terms is increased. Unlike the 
Neumann series expansion and the Newton iterative method with the number of expansion 
terms exceeding three( 3t ≥ ) or two( 2t ≥ ), whose complexity is surpassing that of the exact 
matrix inversion, the MLR method and the methods based on linear equation solving can 
reduce it from 3( )K  to 2( )K  for any arbitrary number of iterations. Compared with other 
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methods whose complexity is, the SSOR and SAMP method have the highest and the least 
complexity for the same iteration respectively, and the MLR, CG, RI and SOR method have 
approximately the equal complexity. In the meantime, the complexity of the SAMP method 
exceeds other methods based on linear equation solving with the same number of iterations, 
when the number of users is small. However, its complexity is asymptotically inferior to other 
simplified algorithms when the number of users is increased. 
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Fig. 1. computation complexity comparison among all simplified algorithms 

5. Performance optimizations 
In order to further improve the performance under the premise of low complexity and in the 
mean time ensure the feasibility of the simplified algorithms in practice, we propose some 
optimization schemes in terms of relaxation parameter, initial solution, and effective noise 
variance. 

5.1 The quantified relaxation parameter 
As can be seen from equation (22), (23) and (29), the selection of relaxation parameter will 
pose effect on the convergence rate of the proposed algorithms which are based on solving the 
given linear equation. It has been proved in [27] that the optimal relaxation parameter optη  can 
be given by 
 

 2 ,
1 2(1 ( ))

opt

J

η
ρ

=
+ − B

                                                  (47) 
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where ( )Jρ B  is the spectral radius of Jacobi iteration matrix JB , which can be expressed as 
 

 1
2K .J

−= −B D W I                                                      (48) 
 

Each element of the diagonal component D  will tends towards to a fixed value N  in 
massive MIMO systems[5], which indicates that 
 

 1
2K

1 .
N

− ≈D I                                                            (49) 

 
Moreover, as the matrix W  is a central Wishart matrix, when the number of N  and K  is 

sufficiently large and the system configuration ratio /K Nβ =  remains fixed, the largest 
eigenvalue maxλ  of W  can be well approximated by [5] 
 

 ( )2
1 .max Nλ β= +                                                       (50) 

 
Actually, the relaxation parameter depends more on the average eigenvalue of W  than the 

largest eigenvalue. However, to obtain the average eigenvalue we must compute all the 
eigenvalues of W within the symbol period or frame duration, resulting in highly burdensome 
complexity in practice. Therefore, we can propose a simple proper relaxation parameter  to 
replace optη  in equation (47) with negligible error as 
 

 ( )22 , 1 1,
1 2(1 )

a
a

η β= = + −
+ −

                                        (51) 

 
where it means that the proper relaxation parameter η  is merely determined by the system 
configuration ratio β . In practice, η  will usually be a constant when the realistic antenna 
configuration of massive MIMO system is fixed. Thus the proposed proper relaxation 
parameter η  can be expected to simplify the implementation and maintain the performance of 
signal detection. 

5.2 The proper initial solution 
In order to facilitate implementation, the traditional iterative algorithms usually set the initial 
solution as an all-zero vector. However, choosing a suitable initial solution can speed up the 
convergence rate. Moreover, better performance can be achieved by choosing a proper initial 
solution than the all-zero vector under the same number of iterations. 

When β  is large enough, 1−D  is a very good approximation for 1−W , and 2KN≈G I  is in 
accordance with the channel hardening phenomenon [28], where the off-diagonal entries of  
become increasingly weaker compared to the diagonal ones, we can obtain 

1 1 1
2KN− − −≈ ≈W D I . Afterwards, the proper initial solutions in equation (22), (25), (29), (31), 

and (44) can be generally set as 
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 (0)
2K MF

1ˆ .
N

=s I y                                                        (52) 

 

5.3 The effective noise variance 
According to equation (44) and (45) we can analyze the convergence rate and optimize the 
performance of SAMP method through defining the effective variance and setting the 
corresponding parameters. The effective variance is composed of the Gaussian white noise 
variance and the additional interference term [29] and it is expressed as 
 

 ( ) 2 ( 1)( ),t t
zα σ β α −= + Φ                                                    (53) 

 
where ( 1)( )tβ α −Φ  approximates the additional interference term, indicating the interference 
from other antennas. According to the work in [30], we have the following upper bound of 
mean squared error function 
 

 
2 ( 1)

( 1)
2 ( 1)( ) .

t
t s

t
s

s α
α

s α

−
−

−Φ ≤
+

                                                   (54) 

 
If the upper bound of the MSE function is chosen, equation (53) can be rewritten as 

 

 
2 ( 1)

( ) 2
2 ( 1) .

t
t s

z t
s

s α
α s β

s α

−

−= +
+

                                                  (55) 

 
In general cases, the effective variance will be initialized to (0) 2

zα σ= . However, this rough 
approximation completely ignores the interference term from other antennas. To achieve the 
exact initial effective variance, an additional term was added for compensation, which can be 
expressed as 
 

 (0) 2 2 2[ ] . z z sVara s β s s= + = +s                                               (56) 

6. Simulation Result 
To verify the performance of the simplified algorithms, we provide the uncoded bit error rate 
(BER) simulation results in this section. The BER performance of the MMSE algorithm with 
exact matrix inversion and its most simplified version of diagonal matrix inversion are 
included as the benchmarks for comparison. We consider the modulation scheme of 16QAM, 
and the massive MIMO system configuration is 128 16N K× = × . In the following simulation 
diagrams, the parameter t  denotes the number of iterations for the simplified algorithm based 
on linear equation solving, and the number of terms adopted in the matrix inversion 
approximation based algorithms as well. We assume that perfect knowledge of H  is readily 
known at the receiver with uncorrelated Rayleigh fading channel effects in simulations. 

Fig. 2 shows the BER performance comparison among the simplified algorithms based on 
matrix inversion approximation. It is observed that the BER performance of all the algorithms 
described in Section III improves when the number of iterations is increased. In the category of 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 4, April 2018                                   1521 

matrix inversion approximation based algorithms, the MLR method outperforms the Neumann 
series expansion and the Newton iterative method with the same number of iterations, whereas 
the Newton iterative method is superior to the Neumann series expansion approach. For 
example, when 3t = , to achieve the BER performance of 10-5, the required SNR for the MLR 
method is just 11dB, while the Newton iterative approximation required 12dB and the 
Neumann series expansion demands more than 16dB. Furthermore, we can make a conclusion 
from the simulation results that the MLR method yields the BER performance near that of the 
MMSE detector with only a small number of expansion terms. 

Fig. 3 compares the BER performance among the algorithms based on linear equation 
solving with the proper relaxation parameter and the proper initial solution proposed in 
Section V. As shown, the BER performance of all algorithms described in Section IV 
improves when we increase the number of iterations. Within this algorithm category, the 
SAMP and SSOR methods achieve the best performance, the SOR and CG methods are 
inferior to them, and the Richardson method obtains the worst performance, when the number 
of iterations is set as 3t ≥ . For example, when 3t = , to achieve the BER performance of 10-5, 
the SNR required by the SAMP method and the SSOR method is just about 11dB, the CG and 
SOR method require approximately 12dB and 14dB, respectively, while the Richardson 
method requires more than 16dB. In the meantime, the SAMP method is slightly better 
compared with SOR method for the number of iterations 2t = . 

The overall comparison of the two categories of simplified algorithms is given in Fig. 4. It is 
clear that the BER performance is ameliorated for all the algorithms with increased number of 
iterations or expansion terms. Fig. 5 compares the BER performance among SAMP, MLR, 
and SSOR algorithms. It is clear that the performances of them are more prominent among the 
simplified algorithms and their performances are quite close to that of the MMSE detector 
with exact matrix inversion, when the number of iteration 2t = . More specifically, the 
performance of the SAMP method outperforms MLR and SSOR with the SNR gain of 0.5dB 
and 2dB respectively, when the number of iterations is set as 2t =  to achieve BER of 10-5. 
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Fig. 2. BER performance comparison between the algorithms based on matrix inversion reduction 
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Fig. 3. BER performance comparison between the algorithms based on linear equation solving  
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Fig. 4. BER performance comparison among all simplified algorithms 
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Fig. 5. BER performance comparison among SSOR, MLR and SAMP 

7. Conclusion 
In this paper, we compare and analyze the simplified detection algorithms to avoid the 
complicated matrix inversion that is indispensable for the conventional MMSE detector. 
These algorithms can reduce the computational complexity from 3( )K  to 2( )K  or ( )NK  
by setting the number of expansion terms or iterations. Meanwhile, we divided these 
algorithms into two categories and make detailed comparison, respectively. In order to 
guarantee satisfactory performance in practice, a simplified AMP algorithm and some 
optimizing measures for setting the algorithm parameters and initial solutions are proposed, 
further improving the performance with a low computational complexity. Simulation results 
show that the MLR method performs best among the algorithms based on matrix inversion 
approximation and the proposed SAMP method is the most prominent one within the 
algorithms based on linear equation solving. The proposed SAMP method outperforms the 
MLR method with a slightly higher complexity and they may serves as salient candidate 
detection schemes for massive MIMO systems in practice. 
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