• Title/Summary/Keyword: isomorphism classes

Search Result 30, Processing Time 0.027 seconds

CONJUGACY CLASSES OF SUBGROUPS OF SPLIT METACYCLIC GROUPS OF PRIME POWER ORDER

  • Sim, Hyo-Seob
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.719-726
    • /
    • 1998
  • In this paper, we consider conjugacy of subgroups of some split metacyclic groups of odd prime power order to determine the numbers of conjugacy classes of subgroups of those groups. The study was motivated by the linear isomorphism problem of metacyclic primitive linear groups.

  • PDF

A PROPERTY OF COFUNCTORS SF(X,A)

  • So, Kwang Ho
    • Kyungpook Mathematical Journal
    • /
    • v.13 no.2
    • /
    • pp.235-240
    • /
    • 1973
  • A k-dimensional vector bundle is a bundle ${\xi}=(E,P,B,F^k)$ with fibre $F^k$ satisfying the local triviality, where F is the field of real numbers R or complex numbers C ([1], [2] and [3]). Let $Vect_k(X)$ be the set consisting of all isomorphism classes of k-dimensional vector bundles over the topological space X. Then $Vect_F(X)=\{Vect_k(X)\}_{k=0,1,{\cdots}}$ is a semigroup with Whitney sum (${\S}1$). For a pair (X, A) of topological spaces, a difference isomorphism over (X, A) is a vector bundle morphism ([2], [3]) ${\alpha}:{\xi}_0{\rightarrow}{\xi}_1$ such that the restriction ${\alpha}:{\xi}_0{\mid}A{\longrightarrow}{\xi}_1{\mid}A$ is an isomorphism. Let $S_k(X,A)$ be the set of all difference isomorphism classes over (X, A) of k-dimensional vector bundles over X with fibre $F^k$. Then $S_F(X,A)=\{S_k(X,A)\}_{k=0,1,{\cdots}}$, is a semigroup with Whitney Sum (${\S}2$). In this paper, we shall prove a relation between $Vect_F(X)$ and $S_F(X,A)$ under some conditions (Theorem 2, which is the main theorem of this paper). We shall use the following theorem in the paper. THEOREM 1. Let ${\xi}=(E,P,B)$ be a locally trivial bundle with fibre F, where (B, A) is a relative CW-complex. Then all cross sections S of ${\xi}{\mid}A$ prolong to a cross section $S^*$ of ${\xi}$ under either of the following hypothesis: (H1) The space F is (m-1)-connected for each $m{\leq}dim$ B. (H2) There is a relative CW-complex (Y, X) such that $B=Y{\times}I$ and $A=(X{\times}I)$ ${\cap}(Y{\times}O)$, where I=[0, 1]. (For proof see p.21 [2]).

  • PDF

CHARACTERIZATION OF PHANTOM GROUPS

  • LEE, DAE-WOONG
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.2
    • /
    • pp.359-364
    • /
    • 2005
  • We give another characteristic feature of the set of phantom maps: After constructing an isomorphism between derived functors, we show that the set of homotopy classes of phantom maps could be restated as the extension product of subinverse towers induced by the given inverse towers.

MONOIDAL FUNCTORS AND EXACT SEQUENCES OF GROUPS FOR HOPF QUASIGROUPS

  • Alvarez, Jose N. Alonso;Vilaboa, Jose M. Fernandez;Rodriguez, Ramon Gonzalez
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.351-381
    • /
    • 2021
  • In this paper we introduce the notion of strong Galois H-progenerator object for a finite cocommutative Hopf quasigroup H in a symmetric monoidal category C. We prove that the set of isomorphism classes of strong Galois H-progenerator objects is a subgroup of the group of strong Galois H-objects introduced in [3]. Moreover, we show that strong Galois H-progenerator objects are preserved by strong symmetric monoidal functors and, as a consequence, we obtain an exact sequence involving the associated Galois groups. Finally, to the previous functors, if H is finite, we find exact sequences of Picard groups related with invertible left H-(quasi)modules and an isomorphism Pic(HMod) ≅ Pic(C)⊕G(H∗) where Pic(HMod) is the Picard group of the category of left H-modules, Pic(C) the Picard group of C, and G(H∗) the group of group-like morphisms of the dual of H.

A CLASSIFICATION OF ELLIPTIC CURVES OVER SOME FINITE FIELDS

  • Park, Hwa-Sin;Park, Joog-Soo;Kim, Daey-Eoul
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.2
    • /
    • pp.591-611
    • /
    • 2001
  • In this paper, we classify elliptic curve by isomorphism classes over some finite fields. We consider finite field as a quotient ring, saying $\mathbb{Z}[i]/{\pi}\mathbb{Z}[i]$ where $\pi$ is a prime element in $\mathbb{Z}[i]$. Here $\mathbb{Z}[i]$ is the ring of Gaussian integers.

A RELATIONSHIP BETWEEN VERTICES AND QUASI-ISOMORPHISMS FOR A CLASS OF BRACKET GROUPS

  • Yom, Peter Dong-Jun
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.6
    • /
    • pp.1197-1211
    • /
    • 2007
  • In this article, we characterize the quasi-isomorphism classes of bracket groups in terms of vertices using vertex-switches. In particular, if two bracket groups are quasi-isomorphic, then there is a sequence of vertex-switches transforming a collection of vertices of a group to a collection of vertices of the other group.

A CRITERION ON PRIMITIVE ROOTS MODULO p

  • PARK, HWASIN;PARK, JOONGSOO;KIM, DAEYEOUL
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.4 no.1
    • /
    • pp.29-38
    • /
    • 2000
  • In this paper, we consider a criterion on primitive roots modulo p where p is the prime of the form $p=2^kq+1$, q odd prime. For such p we also consider the least primitive root modulo p. Also, we deal with certain isomorphism classes of elliptic curves over finite fields.

  • PDF