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A CRITERION ON PRIMITIVE ROOTS MODULO p

Hwasin Park, Joongsoo Park and Daeyeoul Kim

Abstract. In this paper, we consider a criterion on primitive roots modulo p where p

is the prime of the form p = 2kq + 1, q odd prime. For such p we also consider the least

primitive root modulo p. Also, we deal with certain isomorphism classes of elliptic curves

over �nite �elds.

x0. Introduction

In the famous book Disquisitiones Arithmeticae, C. F. Gauss had proved that the

multiplicative group Z
�

p
is cyclic and he had conjectured that 10 is a generator of Z�

p

for in�nitely many p. We call a is a primitive root modulo p if a is a generator of

Z
�

p
. In 1927, E. Artin generalized Gauss' conjecture as: For a not equal to 1, -1, or a

perfect square, do there exist in�nitely many primes p having a as a primitive root. In

1986, Artin's conjecture was proved for almost all primes but at most two primes by

assuming the generalized Riemann hypothesis ([2]).

We note that Gauss' proof is not constructive, so that we have di�culties to get

primitive roots modulo p. In this paper, we restrict ourselves p to be the prime of the

form p = 2q + 1, 4q + 1, 8q + 1 � � � where q is an odd prime. We consider criterions

that for which prime p , a = 2; 3; 5; 7; � � � can be primitive roots modulo p.

Also, we deal with isomorphism classes of elliptic curves over �nite �elds. These

results are similar with the results of [8].

x1. Primitive roots

Let p and q be odd primes.
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Lemma 1.1. Let p = 2kq + 1, k 2 Z
+. Then the set of primitive roots modulo p is

the set of quadratic non-residues modulo p except for a such that

a
s � �1 (mod p); s = 2k�1

:

Proof. Let S be the set of primitive roots modulo p and let T be the subset of Z�

p

which are quadratic non-residues modulo p. If a 2 S, then (a; p) = 1 and ap�1 � 1

(mod p). Since p � 1 is the smallest, a
p�1

2 � �1 (mod p). Then a 2 T . Thus

S � T . Also, j S j= �(�(p)) = �(2kq) = 2k�1(q � 1) and j T j= p�1

2
= 2k�1

q. Thus

j T j � j S j= 2k�1.

Case I. k = 1. We know that �1 2 T and �1 =2 S, since (�1
p
) = (�1)

p�1

2 = (�1)q = �1

and (�1)2 � 1 (mod p). In this case, j T j � j S j= 1, and a = �1 satis�es Lemma.

Case II. k > 1. Then a 2 T , since (a
p
) � a

p�1

2 (mod p) = a
2k�1

q � (�1)q (mod p)

= �1. But a =2 S, since a is a perfect square modulo p if k > 1. In this case,

j T j � j S j= 2k�1 and a
2k�1

� �1 (mod p) has 2k�1 incongruent solutions. Thus

Lemma holds.

By Lemma 1.1, we can show the following:

Theorem 1.2. Let p = 2q + 1.

(1) 2 is a primitive root modulo p if and only if q � 1 (mod 4).

In this case, 2 is the least primitive root modulo p.

(2) 3 is a primitive root modulo p if and only if q = 3.

In this case, 3 is the least primitive root modulo p.

(3) 5 is a primitive root modulo p if and only if q � 1; 3 (mod 5).

In particular, 5 is the least primitive root modulo p if and only if q � 3; 11

(mod 20).

(4) 6 is a primitive root modulo p if and only if q � 5 (mod 12).

(5) 7 is a primitive root modulo p if and only if q � 5; 11 (mod 14).

In particular, 7 is the least primitive root modulo p if and only if q � 19; 39

(mod 140).

(6) 8 is a primitive root modulo p if and only if q � 1 (mod 4).

(7) 10 is a primitive root modulo p if and only if q � 3; 9; 11 (mod 20).

(8) 11 is a primitive root modulo p if and only if q � 1; 7; 13; 15 (mod 22), or

q = 11.

In particular, 11 is the least primitive root modulo p if and only if q � 79, 139,

279, 359, 419, 499, 519, 639, 799, 939, 1079, 1399 (mod 1540).

(9) 12 is not a primitive root for all p.

(10) 13 is a primitive root modulo p if and only if q � 2; 3; 5; 7; 9; 10 (mod 13).

In particular, 13 is the least primitive rot modulo p if and only if q � 659, 699,

839, 919, 1219, 1359, 1539, 2239, 2319, 2459, 2759, 3039, 3299, 3779, 4139,

4299, 4579, 4839, 5179, 5319, 6119, 6159, 6379, 6819, 6939, 6999, 7079, 7519,

7699, 7919, 8479, 8759, 9239, 9799, 9939, 10019, 10299, 10459, 10779, 11339,
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11559, 11619, 11839, 12139, 12279, 12539, 12979, 13159, 13239, 13379, 13679,

14419, 15219, 15399, 16099, 16179, 16239, 16619, 17599, 17859, 17999, 18439,

18699, 19039, 19139, 19399 (mod 20020).

Proof. (1) By Lemma 1.1, 2 is a primitive root modulo p if and only if 2 is a quadratic

non-residue modulo p. By the quadratic reciprocity law, p must be congruent �3

(mod 8). Thus q � 1 (mod 4). (2) By the quadratic reciprocity law, ( 3
p
) = �1 if and

only if p � �5 (mod 12).

Case. p � 5 (mod 12). Then q = 6k + 2 for some k 2 Z. It is impossible.

Case. p � �5 (mod 12). Then q = 6k + 3. Thus q = 3.

(3) Note that ( 5
p
) = �1 if and only if p � �2 (mod 5).

Case. q = 5. Then p = 11 and ( 5
11
) = 1. This case must be omitted.

Case. q = 5k + 1. Then p = 2q + 1 = 10k + 3 � �2 (mod 5). In this case, we have

( 5
p
) = �1.

Case. q = 5k + 2. Then p = 2q + 1 = 10k + 5. It is impossible.

Case. q = 5k + 3. Then p = 2q + 1 = 10k + 7 � 2 (mod 5). In this case, we have

( 5
p
) = �1.

Case. q = 5k + 4. Then p = 2q + 1 = 10k + 9 � 5. Then ( 5
p
) = 1. This case must be

omitted.

In particular, 5 is the least primitive root modulo p if and only if q � 3 (mod 4); q 6=

3, and q � 1; 3 (mod 5). By the chinese remainder theorem, q � 3; 11 (mod 20).

(4) If q � 5 (mod 12), then by (1), 2 is a primitive root modulo p. By Lemma 1.1,

( 2
p
) = �1. Also, by (2), ( 3

p
) = 1. Thus ( 6

p
) = �1. That is 6 is a primitive root modulo

p.

Conversely, if 6 is a primitive root modulo p. Then ( 6
p
) = �1 and p 6= 7. We have

two cases.

Case I. ( 2
p
) = 1 and ( 3

p
) = �1. Then by (1) and (2), q � 3 (mod 4) and q = 3. This

case contradicts to p 6= 7.

Case II. ( 2
p
) = �1 and ( 3

p
) = 1. Then by (1) and the quadratic reciprocity law, we get

q � 1 (mod 4) and p � �1 (mod 12). If p � 1 (mod 12), then we get a contradiction.

Thus we have p � �1 (mod 12) and then q � 5 (mod 6). Thus we have q � 5

(mod 12).

(5) By the quadratic reciprocity law, ( 7
p
) = �1 if and only if p � �5;�11;�13

(mod 28).

Case. p = 28k + 5. Then q = 14k + 2.

Case. p = 28k + 23. Then q = 14k + 11.

Case. p = 28k + 11. Then q = 14k + 5.

Case. p = 28k + 17. Then q = 14k + 8.

Case. p = 28k + 13. Then q = 14k + 6.

Case. p = 28k + 15. Then q = 14k + 7.

Since q is odd prime, we have q � 5; 11 (mod 14).
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In particular, 7 is the least primitive root modulo p if and only if
8
><
>:

q � 3 (mod 4); q 6= 3;

q � 4 (mod 5);

q � 5; 11 (mod 14):

By the chinese remainder theorem, q � 19; 39 (mod 140).

(6) Similar with (4).

(7) By (1), (3) and the Chinese remainder theorem, we can show (7).

(8) By the quadratic reciprocity law, 11 is a quadratic non-residue modulo p if and

only if p � �3;�13;�15;�17;�21 (mod 44). Case. p = 44k+3. Then q = 22k+1.

Case. p = 44k + 41. Then q = 22k + 20.

Case. p = 44k + 13. Then q = 22k + 6.

Case. p = 44k + 31. Then q = 22k + 15.

Case. p = 44k + 15. Then q = 22k + 7.

Case. p = 44k + 29. Then q = 22k + 14.

Case. p = 44k + 17. Then q = 22k + 8.

Case. p = 44k + 27. Then q = 22k + 13.

Case. p = 44k + 21. Then q = 22k + 10.

Case. p = 44k + 23. Then q = 22k + 11.

Since q is odd prime, we have q � 1; 7; 11; 13; 15 (mod 22).

In particular, 11 is the least primitive root modulo p if and only if

8
>>>>><
>>>>>:

q 6� 1 (mod 4); q 6= 3;

q 6� 1; 3 (mod 5);

q 6� 5; 11 (mod 14);

q � 3; 9; 11; 17 (mod 20);

q � 1; 7; 13; 15 (mod 22):

That is, 8>>>>><
>>>>>:

q � 3 (mod 4); q 6= 3; (i)

q � 4 (mod 5); (ii)

q � 1; 9; 13 (mod 14); or q = 7; (iii)

q � 1; 7; 13; 19 (mod 20); (iv)

q � 1; 7; 13; 15 (mod 22): (v)

We do not need q � 19 (mod 20) in (iv) because of (i) and (ii). We also do not need

(iv) because (i), (ii), (iii), (v) and (iv) has no simultaneous solution by the Chinese

remainder theorem. Thus 11 is the least primitive root modulo p if and only if
8>>><
>>>:

q � 3 (mod 4); q 6= 3;

q � 4 (mod 5);

q � 1; 9; 13 (mod 14); or q = 7;

q � 1; 7; 13; 15 (mod 22):
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By the chinese remainder theorem, we have q � 79, 139, 279, 359, 419, 499, 519,

639, 799, 939, 1079, 1399 (mod 1540).

(9) By Lemma 1.1, 12 is a primitive root modulo p if and only if ( 12
p
) = �1. That

is, ( 3
p
) = �1. Then by (2), p must be 7. But 12 is not a primitive root modulo 7.

(10) 13 is a quadratic non-residue modulo p if and only if p � �2;�5;�6 (mod 13).

Case. q = 13. Then p = 27.

Case. q = 13k + 1. Then p = 26k + 3 � 3 (mod 13).

Case. q = 13k + 2. Then p = 26k + 5 � 5 (mod 13).

Case. q = 13k + 3. Then p = 26k + 7 � 7 (mod 13).

Case. q = 13k + 4. Then p = 26k + 9 � 9 (mod 13).

Case. q = 13k + 5. Then p = 26k + 11 � 11 (mod 13).

Case. q = 13k + 6. Then p = 26k + 13.

Case. q = 13k + 7. Then p = 26k + 15 � 2 (mod 13).

Case. q = 13k + 8. Then p = 26k + 17 � 4 (mod 13).

Case. q = 13k + 9. Then p = 26k + 19 � 6 (mod 13).

Case. q = 13k + 10. Then p = 26k + 21 � 8 (mod 13).

Case. q = 13k + 11. Then p = 26k + 23 � 10 (mod 13).

Case. q = 13k + 12. Then p = 26k + 25 � 12 (mod 13).

Since p is the prime of the form p � �2;�5;�6 (mod 13), q � 2; 3; 5; 7; 9; 10 (mod 13).

In particular, 13 is the least primitive root modulo p if and only if

8
>>>>><
>>>>>:

q � 3 (mod 4); q 6= 3;

q � 4 (mod 5);

q � 1; 9; 13 (mod 14); or q = 7;

q � 3; 9; 17; 21 (mod 22);

q � 2; 3; 5; 7; 9; 10 (mod 13):

By the chinese remainder theorem, we have q � 659, 699, 839, 919, 1219, 1359, 1539,

2239, 2319, 2459, 2759, 3039, 3299, 3779, 4139, 4299, 4579, 4839, 5179, 5319, 6119,

6159, 6379, 6819, 6939, 6999, 7079, 7519, 7699, 7919, 8479, 8759, 9239, 9799, 9939,

10019, 10299, 10459, 10779, 11339, 11559, 11619, 11839, 12139, 12279, 12539, 12979,

13159, 13239, 13379, 13679, 14419, 15219, 15399, 16099, 16179, 16239, 16619, 17599,

17859, 17999, 18439, 18699, 19039, 19139, 19399 (mod 20020).

Corollary 1.3. ([3, 4, 5]) Let p = 2q+1. 6 and 8 are primitive roots modulo p if and

only if so is 2. In particular, 2, 6, and 8 are not primitive roots modulo p if and only

if q � 3 (mod 4).

Proof. By Theorem 1.2 (1), 2 is a primitive root modulo p if and only if q � 1 (mod 4).

Then q � 5 (mod 12). For q � 1 (mod 12) or q � 9 (mod 12) contradict to p and q

are primes. By Theorem 1.2 (4), 6 must be a primitive root modulo p. By Theorem

1.2 (1) and (6), 2 and 8 occur simultaneously as a primitive root modulo p.

Remark 1.4. (1) We use Mathematica 3.0 to solve the Chinese remainder theorem and

to get the following (2).
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(2) Let p = 2q + 1. The least primitive root modulo p are relatively small. If �(p)

denotes the least primitive root modulo p. Then for p � 551208899, �(p) = 2 takes

place approximately 50%, and �(p) = 5 happens approximately 33%. If we denote

that h(0) is the total number of primes p, p � 551208899, and h(a) is the number of

primes p which has a as the least primitive root modulo p. Then we have the following

table:

a h(a) a h(a) a h(a) a h(a)

0 1042225 19 5870 53 25 89 0

2 520747 23 3112 59 7 97 0

3 1 29 1858 61 4 101 0

5 347767 31 823 67 1 103 0

7 69369 37 456 71 2 107 0

11 46115 41 217 73 1 109 0

13 31684 43 104 79 0 a � 113 0

17 14014 47 48 83 0

Theorem 1.5. Let p = 4q + 1. Then 2 is the least primitive root modulo p for all p.

Proof. Since q is odd, p = 4(2k + 1) + 1 = 8k + 5. By the quadratic reciprocity law,

2 is a quadratic non-residue modulo p for all p. The smallest p is 13, so 22 � 4 6� �1

(mod p) for all p. By Lemma 1.1, 2 is a primitive root modulo p for all p. In particular,

2 is the least primitive root modulo p for all p.

Theorem 1.6. Let p = 8q + 1.

(1) 2 is not a primitive root modulo p for all p.

(2) 3 is the least primitive root modulo p for all p except for p = 41.

Proof. (1) 2 is not a primitive root modulo p, since ( 2
p
) = 1.

(2) Case. q = 3. Then p = 25. It is impossible.

Case. q = 3k + 1. Then p = 3(8k + 3). It is impossible.

Case. q = 3k + 2. Then p = 24k + 17. Then p � 5 (mod 12). By the quadratic

reciprocity law, ( 3
p
) = �1 for all p. Thus by Lemma 1.1, 3 is a primitive root modulo

p for all p except for p = 41, since 34 � �1 (mod p) has only one p, p = 41. Actually,

7 is the least primitive root modulo 41.

Remark 1.7. (1) Similarly, we get the following: If p = 2nq+1; n � 4; q 6= 3, p > 32
n�1

,

then 3 is the least primitive root modulo p for all p. In particular, 3 is the least

primitive root modulo p for all p = 16q + 1, 32q + 1, 64q + 1, � � � .

(2) We get a result that is similar to Theorem 1.2 for p = 4q + 1, 8q + 1.
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x2. Some other cases

Lemma 2.1. Let p = 2n + 1 be a prime with n � 1. Then the set S of primitive root

modulo p is the set T of quadratic non-residues modulo p.

Proof. In the proof of Lemma 1.1, we have S � T . Also, j S j= �(�(p)) = 2n�1 and

j T j= p�1

2
= 2n�1. Thus we have S = T .

Proposition 2.2. Let p = 2n + 1 be a prime with n � 1.

(1) 2 is the least primitive root modulo p when n = 1; 2.

(2) For n � 3, 3 is the least primitive root modulo p for all p.

Proof. (1) By computation, it is clear.

(2) Since p = 2n + 1 and n � 3, p � 1 (mod 4). Also, p � 2 (mod 3). For if p � 1

(mod 3), then 2n + 1 � 1 (mod 3), get a contradiction. >From p � 1 (mod 4) and

p � 2 (mod 3), we have p � 5 (mod 12). By the quadratic reciprocity law, ( 3
p
) = �1.

By Lemma 2.1, 3 is a primitive root modulo p for all p. Note that p � 1 (mod 8),

since n � 3. By the quadratic reciprocity law, ( 2
p
) = 1. Thus 2 is not a primitive root

modulo p for all p.

Corollary 2.3. Let p be a Fermat's prime. Then 3 is the least primitive root modulo

p.

Remark 2.4. Erdos ([1]) asks if p is large enough, is there always a prime r so that r

is a primitive root modulo p ?

If p = 2n + 1 is a prime with n � 1. Then this is true. For if b is a quadratic non-

residue modulo p and b = p
e1

1 p
e2

2 � � � pet
t
, then (p1

p
)e1 � � � (pt

p
)et = �1. Then (pi

p
) = �1

for some i. Then by Lemma 2.1, pi is a primitive root modulo p for large enough p.

x3 Application to elliptic curves over �nite �eld Fp

Let p and q be odd primes and let K be a �eld with char(K) > 3.

Proposition 3.1. ([6], [7]) Two elliptic curves Eb

a
: y2 = x

3 + ax+ b and Eb
0

a0
: y2 =

x
3 + a

0
x+ b

0 de�ned over K are isomorphic over K if and only if there exists u 2 K�

such that u4a0 = a and u6b0 = b. If Eb

a
�= E

b
0

a0
over K, then the isomorphism is given

by

� : Eb

a
! E

b
0

a0
; � : (x; y) 7! (u�2

x; u
�3
y);

or equivalently

 : Eb
0

a0
! E

b

a
;  : (x; y) 7! (u2x; u3y):

Theorem 3.2. Let E0
a
: y2 = x

3 + ax, E0
ag2i

: y2 = x
3 + ag

2i
x and E

0
ag4i

: y2 =

x
3 + ag

4i
x be elliptic curves de�ned over Fp and let g be a primitive root modulo p.

(1) If p � 1 (mod 4), then E0
a
is isomorphic to E0

ag4i
where 1 � i � p�1

4
.

(2) If p � 3 (mod 4), then E0
a
is isomorphic to E0

ag2i
where 1 � i � p�1

2
.
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Proof. (1) For each i = 1; 2; � � � ; p�1

4
, take u4 = g

p�1�4i. Then u4ag4i = g
(p�1)�4i

ag
4i

= ag
p�1 = a. Also, u = g

p�1�4i

4 = g
p�1

4 g
�i 2 F

�

p
, since p � 1 (mod 4). This u satis�es

the conditon of Proposition 3.1. Thus E0
a
�= E

0
ag4i

for i = 1; 2; � � � ; p�1

4
. That is,

E
0
a
�= E

0
ag4

�= E
0
ag8

�= � � � �= E
0
agp�1 .

(2) By the same way with (1), E0
a
�= E

0
ag2i

for i = 1; 2; � � � ; p�1

2
. That is, E0

a
�= E

0
ag2

�= E
0
ag4

�= � � � �= E
0
agp�1 .

Corollary 3.3. Let T be the set of ellitic curves of the form y
2 = x

3+ax de�ned over

Fp . We denote [E0
a
] be the isomorphism class containing E0

a
.

(1) If p � 1 (mod 4), then the number of isomorphism classes of elliptic curves in

T is 4:

[E0
1 ] 3 y

2 = x
3+x; [E0

g
] 3 y2 = x

3+gx; [E0
g2
] 3 y2 = x

3+g2x; [E0
g3
] 3 y2 = x

3+g3x;

where g is a primitive root modulo p.

(2) If p � 3 (mod 4), then the number of isomorphism classes of elliptic curves in

T is 2:

[E0
1 ] 3 y

2 = x
3 + x; [E0

g
] 3 y2 = x

3 + gx;

where g is a primitive root modulo p.

Proof. (1) We have four isomorphism classes:

E
0
1
�= E

0
g4
�= E

0
g8
�= � � � ;

E
0
g
�= E

0
g5
�= E

0
g9
�= � � � ;

E
0
g2
�= E

0
g6
�= E

0
g10

�= � � � ;

E
0
g3
�= E

0
g7
�= E

0
g11

�= � � � :

(2) We have two isomorphism classes:

E
0
1
�= E

0
g2
�= E

0
g4
�= � � � ;

E
0
g
�= E

0
g3
�= E

0
g5
�= � � � :

Corollary 3.4. Let p = 2q + 1.

(1) If q � 1 (mod 4), then there are two isomorphism classes of elliptic curves over

Fp :

[E0
1 ]; [E

0
2 ]:

(2) If q = 3, then there are two isomorphism classes of elliptic curves over Fp :

[E0
1 ]; [E

0
3 ]:
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(3) If q � 3; 9; 11 (mod 20), then there are two isomorphism classes of elliptic

curves over Fp :

[E0
1 ]; [E

0
10]:

(4) If q � 79, 139, 279, 359, 419, 499, 519, 639, 799, 939, 1079, 1399 (mod 1540),

then there are two isomorphism classes of elliptic curves over Fp :

[E0
1 ]; [E

0
11]:

Proof. (1) By Theorem 1.2, if q � 1 (mod 4), then 2 is the primitive root modulo p .

Since q is odd, p � 3 (mod 4) for all p. By Corollary 3.3, we have two isomorphism

classes.

(2), (3), (4) follow by Theorem 1.2 and Corollary 3.3.

Corollary 3.5. Let p = 4q + 1. There are four isomorphism classes of elliptic curves

over Fp :

[E0
1 ]; [E

0
2 ]; [E

0
4 ]; [E

0
8 ]:

Corollary 3.6. Let p = 8q + 1 with p > 41. There are four isomorphism classes of

elliptic curves over Fp :

[E0
1 ]; [E

0
3 ]; [E

0
9 ]; [E

0
27]:

Example 3.7. Let E0
2 : y2 = x

3 + 2x over F13 . Then E
0
2 is isomorphic to E0

6 : y2 =

x
3 + 6x and E0

5 : y2 = x
3 + 5x. In fact,

E
0
2(F13 ) = fO; (0; 0); (1; 4); (1; 9); (2; 5); (2; 8); (11; 1); (11; 12); (12; 6); (12; 7)g:

Using by Proposition 3.1,

E
0
6 (F13 ) = fO; (0; 0); (10; 7); (10; 6); (7; 12); (7; 1); (6; 5); (6; 8); (3; 4); (3; 9)g;

and

E
0
5 (F13 ) = fO; (0; 0); (9; 9); (9; 4); (5; 8); (5; 5); (8; 12); (8; 1); (4; 7); (4; 6)g:
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