• Title/Summary/Keyword: iron kinetics

Search Result 102, Processing Time 0.027 seconds

A New Functional Model of Catechol Dioxygenases: Properties and Reactivity of [Fe(BLPA)DBC]$BPh_4$

  • Lim, Ji H.;Lee, Ho J.;이강봉;Jang, Ho G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.11
    • /
    • pp.1166-1172
    • /
    • 1997
  • [FeⅢ(BLPA)DBC]BPh4, a new functional model for the catechol dioxygenases, has been synthesized, where BLPA is bis((6-methyl-2-pyridyl)methyl)(2-pyridylmethyl)amine and DBC is 3,5-di-tert-butylcatecholate dianion. The BLPA complex has a structural feature that iron center has a six-coordinate geometry with N4O2 donor set. It exhibits EPR signals at g=5.5 and 8.0 which are typical values for the high-spin FeⅢ (S=5/2) complex with axial symmetry. The BLPA complex reacts with O2 within a few hours to afford intradiol cleavage (75%) and extradiol cleavage (15%) products which is very unique result of all [Fe(L)DBC] complexes studied. The iron-catecholate interaction of BLPA complex is significantly stronger, resulting in the enhanced covalency of the metal-catecholate bonds and low energy catecholate to FeⅢ charge transfer bands at 583 and 962 nm in CH3CN. The enhanced covalency is also reflected by the isotropic shifts exhibited by the DBC protons, which indicate increased semiquinone character. The greater semiquinone character in the BLPA complex correlates well with its high reactivity towards O2. Kinetic studies of the reaction of the BLPA complex with 1 atm O2 in CH3OH and CH2Cl2 under pseudo-first order conditions show that the BLPA complex reacts with O2 much slower than the TPA complex, where TPA is tris(2-pyridylmethyl)amine. It is presumably due to the steric effect of the methyl substituent on the pyridine ring. Nevertheless, both the high specificity and the fast kinetics can be rationalized on the basis of its low energy catecholate to FeⅢ charge transfer bands and large isotropic NMR shifts for the BLPA protons. These results provide insight into the nature of the oxygenation mechanism of the catechol dioxygenases.

Removal of toxic hydroquinone: Comparative studies on use of iron impregnated granular activated carbon as an adsorbent and catalyst

  • Tyagi, Ankit;Das, Susmita;Srivastava, Vimal Chandra
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.474-483
    • /
    • 2019
  • In this study, iron (Fe) impregnated granular activated carbon (Fe-GAC) has been synthesized and characterized for various properties. Comparative studies have been performed for use of Fe-GAC as an adsorbent as well as a catalyst during catalytic oxidation of hydroquinone (HQ). In the batch adsorption study, effect of process parameter like initial HQ concentration ($C_o=25-1,000mg/L$), pH (2-10), contact time (t: 0-24 h), temperature (T: $15-45^{\circ}C$) and adsorbent dose (w: 5-50 g/L) have been studied. Maximum HQ adsorption efficiency of 75% was obtained at optimum parametric condition of: pH = 4, w = 40 g/L and t = 14 h. Pseudo-second order model best-fitted the HQ adsorption kinetics whereas Langmuir model best-represented the isothermal equilibrium behavior. During oxidation studies, effect of various process parameters like initial HQ concentration ($C_o:20-100mg/L$), pH (4-8), oxidant dose ($C_{H2O2}:0.4-1.6mL/L$) and catalyst dose (m: 0.5-1.5 g/L) have been optimized using Taguchi experimental design matrix. Maximum HQ removal efficiency of 83.56% was obtained at optimum condition of $C_o=100mg/L$, pH = 6, $C_{H2O2}=0.4mL/L,$ and m = 1 g/L. Overall use of Fe-GAC during catalytic oxidation seems to be a better as compared to its use an adsorbent for treatment of HQ bearing wastewater.

Study on Adsorption Characteristics of Arsenic on Magnetite (자철석의 비소에 대한 흡착특성 연구)

  • Jeong, Hyeon-Su;Lee, Woo-Chun;Cho, Hyen-Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.425-434
    • /
    • 2008
  • Arsenic contamination in soil and groundwater has recently been one of the most serious environmental concerns. This arsenic contamination can be originated from natural or anthropogenic sources. It has been well known that arsenic behavior in geo-environmental is controlled by various oxides or hydroxides, such as those of iron, manganese, and aluminum, and clay minerals. Among those, particularly, iron (oxy)hydroxides are the most effective scavengers for arsenic. For this reason, this study characterized arsenic adsorption of magnetite which is a kind of iron oxide in nature. The physicochemcial features of the magnetite were investigated to evaluate adsorption of arsenite [As(III)] and arsenate [As(V)] onto magnetite. In addition to experiments on adsorption equilibria, kinetic experiments were also conducted. The point of zero charge (PZC) and specific surface area of the laboratory-synthesized magnetite used as an arsenic adsorbent were measured 6.56 and $16.6\;g/m^2$, which values seem to be relatively smaller than those of the other iron (oxy)hydroxides. From the results of equilibria experiments, arsenite was much more adsorbed onto magnetite than arsenate, indicating the affinity of arsenite on magnetite is larger than arsenate. Arsenite and arsenate showed adsorption maxima at pHs 7 and 2, respectively. In particular, adsorption of arsenate decreased with increase in pH as a result of electrical repulsion caused by anionic arsenate and negatively-charged surface of magnetite. These results indicate that the surface charge of magnetite and the chemical speciation of arsenic should be considered as the most crucial factors in controlling arsenic. The results of kinetic experiments show that arsenate was adsorbed more quickly than arsenite and adsorption of arsenic was investigated to be mostly completed within the duration of 4 hours, regardless of chemical speciation of arsenic. When the results of kinetic experiments were fitted to a variety of kinetic models proposed so far, power function and elovich model were evaluated to be the most suitable ones which can simulate adsorption kinetics of two kinds of arsenic species onto magnetite.

Phosphate removing by graphene oxide in aqueous solution

  • Jun, Tae-Sung;Park, No-Hyung;So, Dea-Sup;Lee, Joon-Woo;Shim, Kwang Bo;Ham, Heon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.325-328
    • /
    • 2013
  • Phosphate has been removed in waste water by chemically synthesized graphene oxide. Removing efficiency of phosphate was investigated using phosphate dispersion aqueous solution, and 70 % of phosphate was removed in phosphate dispersion solution by chemically synthesized graphene oxide solution. Removing efficiency of phosphate was increased from 70 % to 80 % with assistant of iron nano-particle in chemically synthesized graphene oxide solution. Phosphate removing capacity was up to 89.37 mg/g at initial phosphate concentration of 100 mg/l and temperature of 303 K. The Freundlich was applied to describe the equilibrium isotherms and the isotherm constants were determined.

Solid Phase Extraction of Celecoxib from Drug Matrix and Biological Fluids by Grafted Poly β-cyclodextrine/allyl Amine Magnetic Nano-particles

  • Kamari, Sahar;Panahi, Homayon Ahmad;Baimani, Nasim;Moniri, Elham
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.287-295
    • /
    • 2017
  • Using nanotechnology, magnetic nanoparticles of iron oxide were produced via co-precipitation method and followed modification with organic compounds. In the next step, functionalized monomer was provided via coupling ${\beta}$-cyclodextrine and allylamine onto modified magnetic nanoparticles. These nanoparticles were used to establish the adsorption rate of celecoxib. Magnetic nanoparticles are modified by (3-mercaptopropyl)trimethoxysilane. Nano-adsorbent was characterized by analytical and spectroscopic methods, such as Fourier transform infrared spectroscopy, elemental analysis, thermo-gravimetric analysis, and transmission electron microscopy (TEM). Laboratory parameters, such as the kinetics of adsorption isotherms, pH, reaction temperature and capacity were optimized. Finally, by using this nano-adsorbent in the optimized condition, extraction of celecoxib from biological samples as urine, drug matrix and blood plasma was carried out by high performance liquid chromatography with sensitivity and high accuracy.

Removal of Arsenic(V) from Aqueous Solutions by Using Natural Minerals

  • Mohapatra Debasish;Mishra Debaraj;Chaudhury G. Roy;Das R.P.;Park, Kyung-Ho
    • Resources Recycling
    • /
    • v.15 no.5 s.73
    • /
    • pp.38-46
    • /
    • 2006
  • The removal of arsenic(V) using four different natural minerals were evaluated. Parameters like contact time, pH, adsorbent dosages, and As(V) concentration were optimized. The kinetics of adsorption was observed to be fast and reached equilibrium within 2h. As(V) adsorption on studied minerals was dependent on pH and followed a pseudo-second-order reaction model. For kaolin, maximum adsorption was found at pH 5.0. Whereas, in case of other three minerals, a pH range of 6.0-7.0 was found to be the best for As(V) adsorption. The maximum adsorption capacity (Q) was calculated by fitting Langmuir equation to the adsorption isotherms obtained under a specified condition. From the slope of best fit, the Q values were calculated to be 2.07, 2.15, 1.95 and 0.86 mg As(V)/g of bauxite, wad, iron ore and kaolin, respectively. Desorption of As(V) from loaded materials was dependent on the type of leaching reagents used. Based on the results, it was found that among the studied natural minerals, wad was the best As(V) adsorbent.

Reaction Kinetics with Hydrogen and Temperature Dependence of the Hydriding Rate for a Magnesium-Based Nickel Iron Oxide Alloy

  • Song, Myoung Youp;Baek, Sung Hwan;Park, Hye Ryoung
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.463-468
    • /
    • 2012
  • A 71.5 wt%Mg-23.5 wt%Ni-5 wt%$Fe_2O_3$ (Mg-23.5Ni-$5Fe_2O_3$) sample was prepared by a quite simple process, reactive mechanical grinding, and its hydriding and dehydriding properties were then investigated. The reactive mechanical grinding of Mg with Ni and $Fe_2O_3$ is considered to facilitate nucleation and shorten the diffusion distances of the hydrogen atoms. After the hydriding-dehydriding cycling, the Mg-23.5Ni-$5Fe_2O_3$ sample contained $Mg_2Ni$ phase. Expansion and contraction of the hydride-forming materials (Mg and $Mg_2Ni$) with the hydriding and dehydriding reactions are also considered to increase the hydriding and dehydriding rates of the mixture by forming defects and cracks leading to the fragmentation of the particles. The temperature dependence of the hydriding rate of the sample is discussed.

Oxidation of Fe-(5.3-29.8)%Mn-(1.1-1.9)%Al-0.45%C Alloys at 550-650 ℃

  • Park, Soon Yong;Xiao, Xiao;Kim, Min Ji;Lee, Geun Taek;Hwang, Dae Ho;Woo, Young Ho;Lee, Dong Bok
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.53-61
    • /
    • 2022
  • Alloys of Fe-(5.3-29.8)%Mn-(1.1-1.9)%Al-(0.4-0.5)%C were oxidized at 550 ℃ to 650 ℃ for 20 h to understand effects of alloying elements on oxidation. Their oxidation resistance increased with increasing Mn level to a small extent. Their oxidation kinetics changed from parabolic to linear when Mn content was decreased and temperature was increasing. Oxide scales primarily consisted of Fe2O3, Mn2O3, and MnFe2O4 without any protective Al-bearing oxides. During oxidation, Fe, Mn, and a lesser amount of Al diffused outward, while oxygen diffused inward to form internal oxides. Both oxide scales and internal oxides consisted of Fe, Mn, and a small amount of Al. The oxidation of Mn and carbon transformed γ-matrix to α-matrix in the subscale. The oxidation led to the formation of relatively thick oxide scales due to inherently inferior oxidation resistance of alloys and the formation of voids and cracks due to evaporation of manganese, decarburization, and outward diffusion of cations across oxides.

The Effect of Fumed Silica on Nitrate Reduction by Zero-valent Iron (흄드 실리카가 영가철에 의한 질산성질소 환원에 미치는 영향)

  • Cho, Dong-Wan;Jeon, Byong-Hun;Kim, Yong-Je;Song, Ho-Cheol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.599-608
    • /
    • 2010
  • The effect of silica(fumed) on nitrate reduction by zero-valent iron(ZVI) was studied using batch experiment. The reduction of nitrate was tested in three different aqueous media including de-ionized water, artificial groundwater and real groundwater contaminated by nitrate. Kinetics of nitrate reduction in groundwater were faster than those in de-ionized water, and first-order rate constant($k_{obs}$) of ZVI/silica(fumed) process was about 2.5 time greater than that of ZVI process in groundwater. Amendment of Silica(fumed) also decreased ammonium presumably through adsorption on silica surface. The pHs in all processes increased due to oxidation of ZVI, but the increase was lower in groundwater due to buffering capacity of groundwater. The result also showed amount of reduced nitrate increased as initial nitrate concentration increased in groundwater. Separate adsorption isotherm experiments indicated that fumed silica itself had some degree of adsorption capacity for ammonium. The overall results indicated that silica(fumed) might be a promising material for enhancing nitrate reduction by ZVI.

Kinetic Study of the Fischer-Tropsch Synthesis and Water Gas Shift Reactions over a Precipitated Iron Catalyst (철 촉매를 이용한 Fischer-Tropsch 합성 반응과 수성 가스 전환 반응에 대한 반응 속도 연구)

  • Yang, Jung-Il;Chun, Dong Hyun;Park, Ji Chan;Jung, Heon
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.358-364
    • /
    • 2012
  • The kinetics of the Fischer-Tropsch synthesis and water gas shift reactions over a precipitated iron catalyst were studied in a 5 channel fixed-bed reactor. Experimental conditions were changed as follows: synthesis gas $H_2$/CO feed ratios of 0.5~2, reactants flow rate of 60~80 ml/min, and reaction temperature of $255{\sim}275^{\circ}C$ at a constant pressure of 1.5 MPa. The reaction rate of Fischer-Tropsch synthesis was calculated from Eley-Rideal mechanism in which the rate-determining step was the formation of the monomer species (methylene) by hydrogenation of associatively adsorbed CO. Whereas water gas shift reaction rate was determined by the formation of a formate intermediate species as the rate-determining step. As a result, the reaction rates of Fischer-Tropsch synthesis for the hydrocarbon formation and water gas shift for the $CO_2$ production were in good agreement with the experimental values, respectively. Therefore, the reaction rates ($r_{FT}$, $r_{WGS}$, $-r_{CO}$) derived from the reaction mechanisms showed good agreement both with experimental values and with some kinetic models from literature.