DOI QR코드

DOI QR Code

Kinetic Study of the Fischer-Tropsch Synthesis and Water Gas Shift Reactions over a Precipitated Iron Catalyst

철 촉매를 이용한 Fischer-Tropsch 합성 반응과 수성 가스 전환 반응에 대한 반응 속도 연구

  • Yang, Jung-Il (Clean Coal Center, Korea Institute of Energy Research) ;
  • Chun, Dong Hyun (Clean Coal Center, Korea Institute of Energy Research) ;
  • Park, Ji Chan (Clean Coal Center, Korea Institute of Energy Research) ;
  • Jung, Heon (Clean Coal Center, Korea Institute of Energy Research)
  • 양정일 (한국에너지기술연구원 청정석탄센터) ;
  • 천동현 (한국에너지기술연구원 청정석탄센터) ;
  • 박지찬 (한국에너지기술연구원 청정석탄센터) ;
  • 정헌 (한국에너지기술연구원 청정석탄센터)
  • Received : 2011.09.23
  • Accepted : 2011.12.07
  • Published : 2012.04.01

Abstract

The kinetics of the Fischer-Tropsch synthesis and water gas shift reactions over a precipitated iron catalyst were studied in a 5 channel fixed-bed reactor. Experimental conditions were changed as follows: synthesis gas $H_2$/CO feed ratios of 0.5~2, reactants flow rate of 60~80 ml/min, and reaction temperature of $255{\sim}275^{\circ}C$ at a constant pressure of 1.5 MPa. The reaction rate of Fischer-Tropsch synthesis was calculated from Eley-Rideal mechanism in which the rate-determining step was the formation of the monomer species (methylene) by hydrogenation of associatively adsorbed CO. Whereas water gas shift reaction rate was determined by the formation of a formate intermediate species as the rate-determining step. As a result, the reaction rates of Fischer-Tropsch synthesis for the hydrocarbon formation and water gas shift for the $CO_2$ production were in good agreement with the experimental values, respectively. Therefore, the reaction rates ($r_{FT}$, $r_{WGS}$, $-r_{CO}$) derived from the reaction mechanisms showed good agreement both with experimental values and with some kinetic models from literature.

철 촉매를 이용한 Fischer-Tropsch 합성 반응과 수성 가스 전환 반응에 대한 반응 메커니즘과 반응 속도식을 5 채널 고정층 반응기를 이용하여 조사하였다. 실험 조건은, 반응물 합성가스 $H_2$/CO 비 0.5~2, 반응물 공급 유량 60~80 ml/min, 반응 온도 $255{\sim}275^{\circ}C$로서 반응 압력은 1.5 MPa을 유지하였다. F-T 합성 반응의 반응 속도식($r_{FT}$)은 반응 속도 결정 단계로서 분자로 흡착된 CO와 기상의 수소 분자와의 반응을 바탕으로 하는 Eley-Rideal 반응 메카니즘을 통해 계산되었고, WGS 반응의 반응 속도식($r_{WGS}$)은 formate 중간체 생성 반응을 반응 속도 결정 단계로 가정하여 결정되었다. 실험 결과, F-T 합성 반응의 반응 속도식과 WGS 반응의 반응 속도식은 각각 탄화수소 생성과 $CO_2$ 생성에 대한 반응 속도 실험값을 잘 모사하였고, 또한 power law에 근거한 CO 전환 반응에 대한 반응 속도식도 실험값과 잘 일치하였다. 이처럼, 각각의 반응 메카니즘을 바탕으로 도출된 반응 속도식($r_{FT}$, $r_{WGS}$, $-r_{CO}$)은 실험값과 여러 가지 기존 문헌에서 보고된 반응 속도식 모델과 잘 일치하였다.

Keywords

References

  1. Yang, J. H., Kim, H. J., Chun, D. H., Lee, H. T., Hong, J. C., Jung, H. and Yang, J. I., "Mass Transfer Limitations on Fixedbed Reactor for Fischer-Tropsch Synthesis," Fuel Process. Technol., 91, 285-289(2010). https://doi.org/10.1016/j.fuproc.2009.10.010
  2. Li, Y. W., "CTL Development," World CTL 2010 Conference, April, Beijing(2010).
  3. Chun, D. H., Kim, H. J., Lee, H. T., Yang, J. I., Yang, J. H. and Jung, H., "Method for Maturfacturing Iron Catalyst," K. R. Patent No. 10-2010-0115873(2010).
  4. Lox, E. S. and Froment, G. F., "Kinetics of the Fischer-Tropsch Reaction on a Precipitated Promoted Iron Catalyst. 2. Kinetic Modeling," Ind. Eng. Chem. Res., 32, 71-82(1993). https://doi.org/10.1021/ie00013a011
  5. Wojciechowski, B. W., Catal. Rev. -Sci. Eng., 30, 4629(1988).
  6. Zimmerman, W. H. and Bukur, D. B., "Reaction Kinetics over Iron Catalysts Used for the Fischer-tropsch Synthesis," Can. J. Chem. Eng., 68, 292-301(1990). https://doi.org/10.1002/cjce.5450680215
  7. Dry, M. E., "Advances in Fischer-Tropsch Chemistry," Ind. Eng. Chem. Prod. Res. Dev., 15, 282-286(1976). https://doi.org/10.1021/i360060a012
  8. Huff Jr., G. A. and Satterfield, C. N., "Intrinsic Kinetics of the Fischer-Tropsch Synthesis on a Reduced Fused-magnetite Catalyst," Ind. Eng. Chem. Process Des. Dev., 23, 696-705(1984). https://doi.org/10.1021/i200027a012
  9. Atwood, H. E. and Bennett, C. O., "Kinetics of the Fischer-Tropsch Reaction over Iron," Ind. Eng. Chem. Process Des. Dev., 18, 163-170(1979). https://doi.org/10.1021/i260069a023
  10. Ledakowicz, S., Nettelhoff, H., Kokuun, R. and Deckwer, W.-D., Top. Catal., 24, 1043(1985).
  11. Dixit, R. S. and Tavlarides, L. L., "Kinetics of the Fischer-Tropsch Synthesis," Ind. Eng. Chem. Process Des. Dev., 22, 1-9(1983).
  12. Sarup, B. and Wojciechowski, B. W., "Studies of the Fischertropsch Synthesis on a Cobalt Catalyst II. Kinetics of Carbon Monoxide Conversion to Methane and to Higher Hydrocarbons," Can. J. Chem. Eng., 67, 62-74(1989). https://doi.org/10.1002/cjce.5450670110
  13. van der Laan, G. P. and Beenackers, A. A. C. M., "Intrinsic Kinetics of the Gas-solid Fischer-Tropsch and Water Gas Shift Reactions over a Precipitated Iron Catalyst," Appl. Catal. A, 193, 39-53(2000). https://doi.org/10.1016/S0926-860X(99)00412-3
  14. Zhang, H. B. and Schrader, G. L., "Characterization of a Fused Iron Catalyst for Fischer-Tropsch Synthesis by in-situ Laser Raman Spectroscopy," J. Catal., 95, 325-332(1985). https://doi.org/10.1016/0021-9517(85)90038-7
  15. Rethwisch, D. G. and Dumesic, J. A., "Adsorptive and Catalytic Properties of Supported Metal Oxides: III. Water-gas Shift over Supported Iron and Zinc Oxides," J. Catal., 101, 35-42(1986). https://doi.org/10.1016/0021-9517(86)90226-5
  16. Yang, J. I., Park, J. H. and Kim, J. N., "Kinetic Study of the Reverse Water-gas Shift Reaction over $CuO/ZnO/Al_2O_3$ Catalyst at Low Temperature," HWAHAK KONGHAK, 41, 558-563(2003).
  17. Graaf, G. H., Sijtsema, P. J. J. M., Stamhuis, E. J. and Joosten, G. E. H., "Chemical Equilibria in Methanol Synthesis," Chem. Eng. Sci., 41, 2883-2890(1986). https://doi.org/10.1016/0009-2509(86)80019-7

Cited by

  1. Computational Fluid Dynamics Study of Channel Geometric Effect for Fischer-Tropsch Microchannel Reactor vol.52, pp.6, 2014, https://doi.org/10.9713/kcer.2014.52.6.826