DOI QR코드

DOI QR Code

Removal of toxic hydroquinone: Comparative studies on use of iron impregnated granular activated carbon as an adsorbent and catalyst

  • Tyagi, Ankit (Department of Chemical Engineering, Indian Institute of Technology Roorkee) ;
  • Das, Susmita (Department of Chemical Engineering, Indian Institute of Technology Roorkee) ;
  • Srivastava, Vimal Chandra (Department of Chemical Engineering, Indian Institute of Technology Roorkee)
  • Received : 2018.07.11
  • Accepted : 2018.11.10
  • Published : 2019.09.30

Abstract

In this study, iron (Fe) impregnated granular activated carbon (Fe-GAC) has been synthesized and characterized for various properties. Comparative studies have been performed for use of Fe-GAC as an adsorbent as well as a catalyst during catalytic oxidation of hydroquinone (HQ). In the batch adsorption study, effect of process parameter like initial HQ concentration ($C_o=25-1,000mg/L$), pH (2-10), contact time (t: 0-24 h), temperature (T: $15-45^{\circ}C$) and adsorbent dose (w: 5-50 g/L) have been studied. Maximum HQ adsorption efficiency of 75% was obtained at optimum parametric condition of: pH = 4, w = 40 g/L and t = 14 h. Pseudo-second order model best-fitted the HQ adsorption kinetics whereas Langmuir model best-represented the isothermal equilibrium behavior. During oxidation studies, effect of various process parameters like initial HQ concentration ($C_o:20-100mg/L$), pH (4-8), oxidant dose ($C_{H2O2}:0.4-1.6mL/L$) and catalyst dose (m: 0.5-1.5 g/L) have been optimized using Taguchi experimental design matrix. Maximum HQ removal efficiency of 83.56% was obtained at optimum condition of $C_o=100mg/L$, pH = 6, $C_{H2O2}=0.4mL/L,$ and m = 1 g/L. Overall use of Fe-GAC during catalytic oxidation seems to be a better as compared to its use an adsorbent for treatment of HQ bearing wastewater.

Keywords

References

  1. Suresh S, Srivastava VC, Mishra IM. Adsorption of catechol, resorcinol, hydroquinone, and their derivatives: A review. Int. J. Energ. Environ. Eng. 2012;3:1-19. https://doi.org/10.1186/2251-6832-3-1
  2. Enguita FJ, Leitao AL. Hydroquinone: Environmental pollution, toxicity, and microbial answers: Review article. BioMed. Res. Int. 2013;2013:1-14. https://doi.org/10.1155/2013/542168
  3. Burqaz S, Ozcan M, Ozkul A, Karakaya AE. Effect of hydroquinone on the development of chick embryo. Drug Chem. Toxicol. 1994;17:163-174. https://doi.org/10.3109/01480549409014309
  4. Lee JS, Yang EJ, Kim IS. Hydroquinone-induced apoptosis of human lymphocytes through caspase 9/3 pathway. Mol. Biol. Rep. 2012;39:6737-6743. https://doi.org/10.1007/s11033-012-1498-y
  5. Sheftel VO. Handbook of toxic properties of monomers and additives. Boca Raton, FL: Lewis Publishers; 1995.
  6. Colinas RJ, Burkart PT, Lawrence DA. In vitro effects of hydroquinone, benzoquinone, and doxorubicin on mouse and human bone marrow cells at physiological oxygen partial pressure. Toxicol. Appl. Pharmacol. 1994;129:95-102. https://doi.org/10.1006/taap.1994.1232
  7. Prabhakaran DI, Basha CA, Kannadasan, T, Aravinthan P. Removal of hydroquinone from water by electrocoagulation using flow cell and optimization by response surface methodology. J. Environ. Sci. Health A Toxic. Hazard. Subst. Environ. Eng. 2010;45:400-412. https://doi.org/10.1080/10934520903540174
  8. El-Ashtoukhy E-SZ, El-Taweel YA, Abdelwahab O, Nassef EM. Treatment of petrochemical wastewater containing phenolic compounds by electrocoagulation using a fixed bed electrochemical reactor. Int. J. Electrochem. Sci. 2013;8:1534-1550.
  9. Anand MV, Srivastava VC, Singh S, Bhatnagar R, Mall ID. Electrochemical treatment of alkali decrement wastewater containing terephthalic acid using iron electrodes. J. Taiwan Inst. Chem. Eng. 2014;45:908-913. https://doi.org/10.1016/j.jtice.2013.08.010
  10. Enache TA, Oliveira-Brett AM. Phenol and para-substituted phenols electrochemical oxidation pathways. J. Electroanal. Chem. 2011;655:9-16. https://doi.org/10.1016/j.jelechem.2011.02.022
  11. Akai N, Kawai A, Shibuya K. Water assisted photo-oxidation from hydroquinone to p-benzoquinone in a solid Ne matrix. J. Photochem. Photobiol. A Chem. 2011;223:182-188. https://doi.org/10.1016/j.jphotochem.2011.08.016
  12. Tudorachea M, Mahalub D, Teodorescuc C, Stand R, Balae C, Parvulescua VI. Biocatalytic microreactor incorporating HRP anchored onmicro-/nano-lithographic patterns for flow oxidation of phenols. J. Mol. Catal. B Enzym. 2011;69:133-139. https://doi.org/10.1016/j.molcatb.2011.01.007
  13. Fortunya A, Fontb J, Fabregat A. Wet air oxidation of phenol using active carbon as catalyst. Appl. Catal. B Environ. 1998;19:165-173. https://doi.org/10.1016/S0926-3373(98)00072-1
  14. Ting WP, Huang YH, Lu MC. Oxidation of 2,6-dimethylaniline by the Fenton, electro-Fenton and photoelectro-Fenton processes. J. Environ. Sci. Health A Toxic Hazard. Subst. Environ. Eng. 2011;46:1085-1091. https://doi.org/10.1080/10934529.2011.590385
  15. Maggi R, Piscopoa CG, Sartori G, Storaro L, Moretti E. Supported sulfonic acids: Metal-free catalysts for the oxidation of hydroquinones to benzoquinones with hydrogen peroxide. Appl. Catal. A Gen. 2012;411:146-152. https://doi.org/10.1016/j.apcata.2011.10.032
  16. Owsik I, Kolarz BZ. The oxidation of hydroquinone to p-benzoquinone catalysed by Cu(II) ions immobilized on acrylic resins with aminoguanidyl groups: Part 1. J. Mol. Catal. A Chem. 2002;178:63-71. https://doi.org/10.1016/S1381-1169(01)00299-0
  17. Sato M, Inaki Y, Kondo K, Takemoto K. Functional monomers and polymers. XXXV. Oxidation of hydroquinone catalyzed by Cu(II)-polyelectrolyte complexes. J. Polym. Sci. Polym. Chem. 1977;15:2059-2065. https://doi.org/10.1002/pol.1977.170150902
  18. Radel RJ, Sullivan JM, Hatfleld JD. Catalytic oxidation of hydroquinone to quinone using molecular oxygen. Ind. Eng. Chem. Prod. Res. Dev. 1902;21:566-570. https://doi.org/10.1021/i300008a010
  19. Yamashita K, Niehibu Y, Okada I, Tsuda K. Oxidation of hydrophobic hydroquinone by polyvinylpyridine-Cu(II) complex catalyst. Polym. Bull. 1989;22:307-310. https://doi.org/10.1007/BF00282857
  20. Isabela CU, Franka S, Josepa F, Azaela F, Agustib F, Christophe B. Polymer supported copper catalysts for aqueous phenol oxidation. Recents progres en Genie des Procedes, Numero 94. Paris, France. 2007.
  21. Derikvand F, Bigi F, Maggi R, Piscopo CG, Sartori G. Oxidation of hydroquinones to benzoquinones with hydrogen peroxide using catalytic amount of silver oxide under batch and continuous-flow conditions. J. Catal. 2010;271:99-103. https://doi.org/10.1016/j.jcat.2010.02.015
  22. Gupta VK, Kumar R, Nayak A, Saleh TA, Barakat MA. Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: A review. Adv. Colloid Interface Sci. 2013;193-194:24-34. https://doi.org/10.1016/j.cis.2013.03.003
  23. Gupta VK, Saleh TA. Sorption of pollutants by porous carbon, carbon nanotubes and fullerene - An overview. Environ. Sci. Pollut. Res. 2013;20:2828-2843. https://doi.org/10.1007/s11356-013-1524-1
  24. Gupta VK, Atar N, Yola ML, Ustundag Z, Uzun L. A novel magnetic Fe@Au core-shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res. 2014;48:210-217. https://doi.org/10.1016/j.watres.2013.09.027
  25. Gupta VK, Nayak A, Agarwal S, Tyagi I. Potential of activated carbon from waste rubber tire for the adsorption of phenolics: Effect of pre-treatment conditions. J. Colloid Interface Sci. 2014;417:420-430. https://doi.org/10.1016/j.jcis.2013.11.067
  26. Gupta VK, Nayak A, Agarwal S. Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environ. Eng. Res. 2015;20:1-18. https://doi.org/10.4491/eer.2015.018
  27. Saleh TA, Gupta VK. Processing methods, characteristics and adsorption behavior of tire derived carbons: A review. Adv. Colloid Interface Sci. 2014;211:93-101. https://doi.org/10.1016/j.cis.2014.06.006
  28. Garten VA, Weiss DE. The quinone-hydroquinone character of activated carbon and carbon black. Aust. J. Chem. 1955;8:68-95. https://doi.org/10.1071/CH9550068
  29. Ghaedi M, Hajjati S, Mahmudi Z, et al. Modeling of competitive ultrasonic assisted removal of the dyes - Methylene blue and safranin-O using $Fe_3O_4$ nanoparticles. Chem. Eng. J. 2015;268:28-37. https://doi.org/10.1016/j.cej.2014.12.090
  30. Karthikeyan S, Gupta VK, Boopathy R, Titus A, Sekaran G. A new approach for the degradation of high concentration of aromatic amine by heterocatalytic Fenton oxidation: Kinetic and spectroscopic studies. J. Mol. Liq. 2012;173:153-163. https://doi.org/10.1016/j.molliq.2012.06.022
  31. Lucking F, Koser H, Jank M, Ritter A. Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenol with hydrogen peroxide in aqueous solution. Water Res. 1998;32:2607-2614. https://doi.org/10.1016/S0043-1354(98)00016-5
  32. Zazo JA, Casas JA, Mohedano AF, Rodriguez JJ. Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst. Appl. Catal. B Environ. 2006;65:261-268. https://doi.org/10.1016/j.apcatb.2006.02.008
  33. Abussaud B, Asmaly HA, Ihsanullah, et al. Sorption of phenol from waters on activated carbon impregnated with iron oxide, aluminum oxide and titanium oxide. J. Mol. Liq. 2016;213:351-359. https://doi.org/10.1016/j.molliq.2015.08.044
  34. Yin CY, Aroua MK, Daud WMAW. Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions. Sep. Purif. Technol. 2007;52:403-415. https://doi.org/10.1016/j.seppur.2006.06.009
  35. Pereira M, Oliveira L, Murad E. Iron oxide catalysts: Fenton and Fenton-like reactions - A review. Clay Miner. 2016;47:285-302. https://doi.org/10.1180/claymin.2012.047.3.01
  36. Andreozzi R, D'Apuzzo A, Marotta R. Oxidation of aromatic substrates in water/goethite slurry by means of hydrogen peroxide. Water Res. 2002;36:4691-4698. https://doi.org/10.1016/S0043-1354(02)00204-X
  37. Lin SS, Gurol MD. Catalytic decomposition of hydrogen peroxide on iron oxide: Kinetics, mechanism, and implications. Environ. Sci. Technol. 1998;32:1417-1423. https://doi.org/10.1021/es970648k
  38. Kwan WP, Voelker BM. Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite. Environ. Sci. Technol. 2002;36:1467-1476. https://doi.org/10.1021/es011109p
  39. Quintanilla A, Casas JA, Zazo JA, Mohedano AF, Rodriguez JJ. Wet air oxidation of phenol at mild conditions with a Fe/activated carbon catalyst. Appl. Catal. B Environ. 2006;62:115-120. https://doi.org/10.1016/j.apcatb.2005.07.001
  40. IS 1350-1: Methods of test for coal and coke, Part I: Proximate analysis. Bureau of Indian standards, Manak Bhawan, New Delhi, India. 1984.
  41. Srivastava VC, Mall ID, Mishra IM. Multi-component adsorption study of metal ions onto bagasse fly ash using Taguchi's design of experimental methodology. Ind. Eng. Chem. Res. 2007;46:5697-5706. https://doi.org/10.1021/ie0609822
  42. Srivastava VC, Mall ID, Mishra IM. Optimization of parameters for adsorption of metal ions onto rice husk ash using Taguchi's experimental design methodology. Chem. Eng. J. 2008;140:136-144. https://doi.org/10.1016/j.cej.2007.09.030
  43. Srivastava VC, Patil D, Srivastava KK. Parameteric optimization of dye removal by electrocoagulation using Taguchi methodology. Int. J. Chem. Reactor Eng. 2011;9:article A8.
  44. Barker TB. Engineering quality by design. New York: Marcel Dekker, Inc.;1990.
  45. Suresh S, Srivastava VC, Mishra IM. Adsorptive removal of phenol from binary aqueous solution with aniline and 4-nitrophenol by granular activated carbon. Chem. Eng. J. 2011;171:997-1003. https://doi.org/10.1016/j.cej.2011.04.050
  46. Blanco-Martinez DA, Giraldo L, Moreno-Pirajan JC. Effect of the pH in the adsorption and in the immersion enthalpy of monohydroxylated phenols from aqueous solutions on activated carbons. J. Hazard. Mater. 2009;169:291-296. https://doi.org/10.1016/j.jhazmat.2009.03.099
  47. Suresh S, Srivastava VC, Mishra IM. Adsorption of hydroquinone in aqueous solution by granular activated carbon. J. Environ. Eng. 2011;137:1145-1157. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000443
  48. Choi H-J. Application of surface modified sericite to remove anionic dye from an aqueous solution. Environ. Eng. Res. 2017;22:312-319. https://doi.org/10.4491/eer.2016.156
  49. Olufemi BA, Otolorin F. Comparative adsorption of crude oil using mango (Mangnifera indica) shell and mango shell activated carbon. Environ. Eng. Res. 2017;22:384-392. https://doi.org/10.4491/eer.2017.011
  50. Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34:451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
  51. Rameshraja D, Srivastava VC, Kushwaha JP, Mall ID. Quinoline adsorption onto granular activated carbon and bagasse fly ash. Chem. Eng. J. 2012;181-182:343-351. https://doi.org/10.1016/j.cej.2011.11.090
  52. Weber WJ, Morris JC. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. ASCE 1963;89:31-60. https://doi.org/10.1061/JSEDAI.0000430
  53. Boyd GE, Adamson AW, Meyers LS. The exchange adsorption of ions from aqueous solution by organic zeolites. II. Kinetics. J. Am. Chem. Soc. 1947;69:2836-2848. https://doi.org/10.1021/ja01203a066
  54. Vermeulen T. Theory for irreversible and constant-pattern solid diffusion. Ind. Eng. Chem. 1953;45:1664-1670. https://doi.org/10.1021/ie50524a025
  55. Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918;40:1361-1403. https://doi.org/10.1021/ja02242a004
  56. Freundlich HMF. Over the adsorption in solution. J. Phys. Chem. 1906;57:385-471.
  57. Temkin MI, Pyzhev V. Kinetics of ammonia synthesis on promoted iron catalyst. Acta Physicochim. URSS 1940;12:327-356.
  58. Redlich O, Peterson DL. A useful adsorption isotherm. J. Phys. Chem. 1959;63:1024-1026. https://doi.org/10.1021/j150576a611
  59. Chatterjee IB. Process for the isolation of a major harmful oxidant from cigarette smoke. Patent No.: US 6782891 B2, 2004.
  60. Franz M, Arafat HA, Pinto NG. Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon. Carbon 2000;38:1807-1819. https://doi.org/10.1016/S0008-6223(00)00012-9
  61. Park HS, Koduru JR, Choo KH, Lee B. Activated carbons impregnated with iron oxide nanoparticles for enhanced removal of bisphenol A and natural organic matter. J. Hazard. Mater. 2015;286:315-324. https://doi.org/10.1016/j.jhazmat.2014.11.012
  62. Lin D, Xing B. Adsorption of phenolic compounds by carbon nanotubes: Role of aromaticity and substitution of hydroxyl groups. Environ. Sci. Technol. 2008;42:7254-7259. https://doi.org/10.1021/es801297u
  63. Koduru JR, Lingamdinne LP, Singh J, Choo KH. Effective removal of bisphenol A (BPA) from water using a goethite/activated carbon composite. Process Saf. Environ. Prot. 2016;103:87-96. https://doi.org/10.1016/j.psep.2016.06.038
  64. Lingamdinne LP, Chang YY, Yang JK, et al. Biogenic reductive preparation of magnetic inverse spinel iron oxide nanoparticles for the adsorption removal of heavy metals. Chem. Eng. J. 2017;307:74-84. https://doi.org/10.1016/j.cej.2016.08.067
  65. Melero JA, Calleja G, Martinez F, Molina R, Pariente MI. Nanocomposite $Fe_2O_3$/SBA-15: An efficient and stable catalyst for the catalytic wet peroxidation of phenolic aqueous solutions. Chem. Eng. J. 2007;131:245-256. https://doi.org/10.1016/j.cej.2006.12.007
  66. Subbaramaiah V, Srivastava VC, Mall ID. Optimization of reaction parameters and kinetic modeling of catalytic wet peroxidation of picoline by Cu/SBA-15. Ind. Eng. Chem. Res. 2013;52:9021-9029. https://doi.org/10.1021/ie400124d
  67. Subbaramaiah V, Srivastava VC, Mall ID. Catalytic activity of Cu/SBA-15 for peroxidation of pyridine bearing wastewater at atmospheric condition. AIChE J. 2013;59:2577-2586. https://doi.org/10.1002/aic.14017
  68. Chauhan R, Srivastava VC, Hiwarkar AD. Electrochemical mineralization of chlorophenol by ruthenium oxide coated titanium electrode. J. Taiwan Inst. Chem. Eng. 2016;69:106-117. https://doi.org/10.1016/j.jtice.2016.10.016
  69. Ding C, Li Y, Wang Y, et al. Highly selective adsorption of hydroquinone by hydroxyethyl cellulose functionalized with magnetic/ionic liquid. Int. J. Biol. Macromol. 2018;107:957-964. https://doi.org/10.1016/j.ijbiomac.2017.09.075
  70. Jiang X, Chen H-Y, Liu L-L, Qiu L-G, Jiang X. $Fe_3O_4$ embedded ZIF-8 nanocrystals with ultra-high adsorption capacity towards hydroquinone. J. Alloy. Compd. 2015;646:1075-1082. https://doi.org/10.1016/j.jallcom.2015.06.021
  71. Ouachtak H, Akbour RA, Douch J, Jada A, Hamdani M. Removal from water and adsorption onto natural quartz sand of hydroquinone. J. Encapsul. Adsorpt. Sci. 2015;5:131-143. https://doi.org/10.4236/jeas.2015.53011
  72. Wang W, Pan S, Xu R, Zhang J, Wang S, Shen J. Competitive adsorption behaviors, characteristics, and dynamics of phenol, cresols, and dihydric phenols onto granular activated carbon. Desalin. Water Treat. 2015;56:770-778. https://doi.org/10.1080/19443994.2014.940385
  73. Wang X, Lu M, Wang H, Pei Y, Rao H, Du X. Three-dimensional graphene aerogels-mesoporous silica frameworks for superior adsorption capability of phenols. Sep. Purif. Technol. 2015;153:7-13. https://doi.org/10.1016/j.seppur.2015.08.030
  74. Gosu V, Dhakar A, Sikarwar P, Kumar UKA, Subbaramaiah V, Zhang TC. Wet peroxidation of resorcinol catalyzed by copper impregnated granular activated carbon. J. Environ. Manage. 2018;223:825-833. https://doi.org/10.1016/j.jenvman.2018.06.093
  75. Wang Y, Wei H, Zhao Y, Sun W, Sun C. The optimization, kinetics and mechanism of m-cresol degradation via catalytic wet peroxide oxidation with sludge-derived carbon catalyst. J. Hazard. Mater. 2017;326:36-46. https://doi.org/10.1016/j.jhazmat.2016.12.014

Cited by

  1. Comparative and Equilibrium Studies on Anionic and Cationic Dyes Removal by Nano-Alumina-Doped Catechol Formaldehyde Composite vol.2020, 2019, https://doi.org/10.1155/2020/7617989
  2. Study of polarized activated carbon filters as simultaneous adsorbent and 3D-type electrode materials for electro-Fenton reactors vol.8, pp.5, 2019, https://doi.org/10.1016/j.jece.2020.104414
  3. Adsorptive removal and recovery of organic pollutants from wastewater using waste paper-derived carbon-based aerogel vol.268, 2019, https://doi.org/10.1016/j.chemosphere.2020.129319
  4. Remarkable adsorption of hydroquinone as an anion contaminant by using the magnetic supported bimetallic (NiCu-MOF@MAC) nanocomposites in aqueous solutions vol.28, pp.48, 2019, https://doi.org/10.1007/s11356-021-15295-2