Browse > Article
http://dx.doi.org/10.4491/eer.2018.232

Removal of toxic hydroquinone: Comparative studies on use of iron impregnated granular activated carbon as an adsorbent and catalyst  

Tyagi, Ankit (Department of Chemical Engineering, Indian Institute of Technology Roorkee)
Das, Susmita (Department of Chemical Engineering, Indian Institute of Technology Roorkee)
Srivastava, Vimal Chandra (Department of Chemical Engineering, Indian Institute of Technology Roorkee)
Publication Information
Environmental Engineering Research / v.24, no.3, 2019 , pp. 474-483 More about this Journal
Abstract
In this study, iron (Fe) impregnated granular activated carbon (Fe-GAC) has been synthesized and characterized for various properties. Comparative studies have been performed for use of Fe-GAC as an adsorbent as well as a catalyst during catalytic oxidation of hydroquinone (HQ). In the batch adsorption study, effect of process parameter like initial HQ concentration ($C_o=25-1,000mg/L$), pH (2-10), contact time (t: 0-24 h), temperature (T: $15-45^{\circ}C$) and adsorbent dose (w: 5-50 g/L) have been studied. Maximum HQ adsorption efficiency of 75% was obtained at optimum parametric condition of: pH = 4, w = 40 g/L and t = 14 h. Pseudo-second order model best-fitted the HQ adsorption kinetics whereas Langmuir model best-represented the isothermal equilibrium behavior. During oxidation studies, effect of various process parameters like initial HQ concentration ($C_o:20-100mg/L$), pH (4-8), oxidant dose ($C_{H2O2}:0.4-1.6mL/L$) and catalyst dose (m: 0.5-1.5 g/L) have been optimized using Taguchi experimental design matrix. Maximum HQ removal efficiency of 83.56% was obtained at optimum condition of $C_o=100mg/L$, pH = 6, $C_{H2O2}=0.4mL/L,$ and m = 1 g/L. Overall use of Fe-GAC during catalytic oxidation seems to be a better as compared to its use an adsorbent for treatment of HQ bearing wastewater.
Keywords
Adsorption; Catalytic oxidation; Granular activated carbon; Hydroquinone; Taguchi methodology;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Maggi R, Piscopoa CG, Sartori G, Storaro L, Moretti E. Supported sulfonic acids: Metal-free catalysts for the oxidation of hydroquinones to benzoquinones with hydrogen peroxide. Appl. Catal. A Gen. 2012;411:146-152.   DOI
2 Owsik I, Kolarz BZ. The oxidation of hydroquinone to p-benzoquinone catalysed by Cu(II) ions immobilized on acrylic resins with aminoguanidyl groups: Part 1. J. Mol. Catal. A Chem. 2002;178:63-71.   DOI
3 Sato M, Inaki Y, Kondo K, Takemoto K. Functional monomers and polymers. XXXV. Oxidation of hydroquinone catalyzed by Cu(II)-polyelectrolyte complexes. J. Polym. Sci. Polym. Chem. 1977;15:2059-2065.   DOI
4 Radel RJ, Sullivan JM, Hatfleld JD. Catalytic oxidation of hydroquinone to quinone using molecular oxygen. Ind. Eng. Chem. Prod. Res. Dev. 1902;21:566-570.   DOI
5 Yamashita K, Niehibu Y, Okada I, Tsuda K. Oxidation of hydrophobic hydroquinone by polyvinylpyridine-Cu(II) complex catalyst. Polym. Bull. 1989;22:307-310.   DOI
6 Isabela CU, Franka S, Josepa F, Azaela F, Agustib F, Christophe B. Polymer supported copper catalysts for aqueous phenol oxidation. Recents progres en Genie des Procedes, Numero 94. Paris, France. 2007.
7 Derikvand F, Bigi F, Maggi R, Piscopo CG, Sartori G. Oxidation of hydroquinones to benzoquinones with hydrogen peroxide using catalytic amount of silver oxide under batch and continuous-flow conditions. J. Catal. 2010;271:99-103.   DOI
8 Gupta VK, Kumar R, Nayak A, Saleh TA, Barakat MA. Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: A review. Adv. Colloid Interface Sci. 2013;193-194:24-34.   DOI
9 Gupta VK, Saleh TA. Sorption of pollutants by porous carbon, carbon nanotubes and fullerene - An overview. Environ. Sci. Pollut. Res. 2013;20:2828-2843.   DOI
10 Gupta VK, Atar N, Yola ML, Ustundag Z, Uzun L. A novel magnetic Fe@Au core-shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res. 2014;48:210-217.   DOI
11 Gupta VK, Nayak A, Agarwal S, Tyagi I. Potential of activated carbon from waste rubber tire for the adsorption of phenolics: Effect of pre-treatment conditions. J. Colloid Interface Sci. 2014;417:420-430.   DOI
12 Gupta VK, Nayak A, Agarwal S. Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environ. Eng. Res. 2015;20:1-18.   DOI
13 Karthikeyan S, Gupta VK, Boopathy R, Titus A, Sekaran G. A new approach for the degradation of high concentration of aromatic amine by heterocatalytic Fenton oxidation: Kinetic and spectroscopic studies. J. Mol. Liq. 2012;173:153-163.   DOI
14 Saleh TA, Gupta VK. Processing methods, characteristics and adsorption behavior of tire derived carbons: A review. Adv. Colloid Interface Sci. 2014;211:93-101.   DOI
15 Garten VA, Weiss DE. The quinone-hydroquinone character of activated carbon and carbon black. Aust. J. Chem. 1955;8:68-95.   DOI
16 Ghaedi M, Hajjati S, Mahmudi Z, et al. Modeling of competitive ultrasonic assisted removal of the dyes - Methylene blue and safranin-O using $Fe_3O_4$ nanoparticles. Chem. Eng. J. 2015;268:28-37.   DOI
17 Lucking F, Koser H, Jank M, Ritter A. Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenol with hydrogen peroxide in aqueous solution. Water Res. 1998;32:2607-2614.   DOI
18 Zazo JA, Casas JA, Mohedano AF, Rodriguez JJ. Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst. Appl. Catal. B Environ. 2006;65:261-268.   DOI
19 Yin CY, Aroua MK, Daud WMAW. Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions. Sep. Purif. Technol. 2007;52:403-415.   DOI
20 Abussaud B, Asmaly HA, Ihsanullah, et al. Sorption of phenol from waters on activated carbon impregnated with iron oxide, aluminum oxide and titanium oxide. J. Mol. Liq. 2016;213:351-359.   DOI
21 Pereira M, Oliveira L, Murad E. Iron oxide catalysts: Fenton and Fenton-like reactions - A review. Clay Miner. 2016;47:285-302.   DOI
22 Quintanilla A, Casas JA, Zazo JA, Mohedano AF, Rodriguez JJ. Wet air oxidation of phenol at mild conditions with a Fe/activated carbon catalyst. Appl. Catal. B Environ. 2006;62:115-120.   DOI
23 Andreozzi R, D'Apuzzo A, Marotta R. Oxidation of aromatic substrates in water/goethite slurry by means of hydrogen peroxide. Water Res. 2002;36:4691-4698.   DOI
24 Lin SS, Gurol MD. Catalytic decomposition of hydrogen peroxide on iron oxide: Kinetics, mechanism, and implications. Environ. Sci. Technol. 1998;32:1417-1423.   DOI
25 Kwan WP, Voelker BM. Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite. Environ. Sci. Technol. 2002;36:1467-1476.   DOI
26 IS 1350-1: Methods of test for coal and coke, Part I: Proximate analysis. Bureau of Indian standards, Manak Bhawan, New Delhi, India. 1984.
27 Srivastava VC, Mall ID, Mishra IM. Multi-component adsorption study of metal ions onto bagasse fly ash using Taguchi's design of experimental methodology. Ind. Eng. Chem. Res. 2007;46:5697-5706.   DOI
28 Srivastava VC, Mall ID, Mishra IM. Optimization of parameters for adsorption of metal ions onto rice husk ash using Taguchi's experimental design methodology. Chem. Eng. J. 2008;140:136-144.   DOI
29 Barker TB. Engineering quality by design. New York: Marcel Dekker, Inc.;1990.
30 Subbaramaiah V, Srivastava VC, Mall ID. Catalytic activity of Cu/SBA-15 for peroxidation of pyridine bearing wastewater at atmospheric condition. AIChE J. 2013;59:2577-2586.   DOI
31 Ouachtak H, Akbour RA, Douch J, Jada A, Hamdani M. Removal from water and adsorption onto natural quartz sand of hydroquinone. J. Encapsul. Adsorpt. Sci. 2015;5:131-143.   DOI
32 Chauhan R, Srivastava VC, Hiwarkar AD. Electrochemical mineralization of chlorophenol by ruthenium oxide coated titanium electrode. J. Taiwan Inst. Chem. Eng. 2016;69:106-117.   DOI
33 Ding C, Li Y, Wang Y, et al. Highly selective adsorption of hydroquinone by hydroxyethyl cellulose functionalized with magnetic/ionic liquid. Int. J. Biol. Macromol. 2018;107:957-964.   DOI
34 Jiang X, Chen H-Y, Liu L-L, Qiu L-G, Jiang X. $Fe_3O_4$ embedded ZIF-8 nanocrystals with ultra-high adsorption capacity towards hydroquinone. J. Alloy. Compd. 2015;646:1075-1082.   DOI
35 Melero JA, Calleja G, Martinez F, Molina R, Pariente MI. Nanocomposite $Fe_2O_3$/SBA-15: An efficient and stable catalyst for the catalytic wet peroxidation of phenolic aqueous solutions. Chem. Eng. J. 2007;131:245-256.   DOI
36 Lin D, Xing B. Adsorption of phenolic compounds by carbon nanotubes: Role of aromaticity and substitution of hydroxyl groups. Environ. Sci. Technol. 2008;42:7254-7259.   DOI
37 Koduru JR, Lingamdinne LP, Singh J, Choo KH. Effective removal of bisphenol A (BPA) from water using a goethite/activated carbon composite. Process Saf. Environ. Prot. 2016;103:87-96.   DOI
38 Lingamdinne LP, Chang YY, Yang JK, et al. Biogenic reductive preparation of magnetic inverse spinel iron oxide nanoparticles for the adsorption removal of heavy metals. Chem. Eng. J. 2017;307:74-84.   DOI
39 Subbaramaiah V, Srivastava VC, Mall ID. Optimization of reaction parameters and kinetic modeling of catalytic wet peroxidation of picoline by Cu/SBA-15. Ind. Eng. Chem. Res. 2013;52:9021-9029.   DOI
40 Burqaz S, Ozcan M, Ozkul A, Karakaya AE. Effect of hydroquinone on the development of chick embryo. Drug Chem. Toxicol. 1994;17:163-174.   DOI
41 Suresh S, Srivastava VC, Mishra IM. Adsorption of catechol, resorcinol, hydroquinone, and their derivatives: A review. Int. J. Energ. Environ. Eng. 2012;3:1-19.   DOI
42 Enguita FJ, Leitao AL. Hydroquinone: Environmental pollution, toxicity, and microbial answers: Review article. BioMed. Res. Int. 2013;2013:1-14.   DOI
43 Lee JS, Yang EJ, Kim IS. Hydroquinone-induced apoptosis of human lymphocytes through caspase 9/3 pathway. Mol. Biol. Rep. 2012;39:6737-6743.   DOI
44 Choi H-J. Application of surface modified sericite to remove anionic dye from an aqueous solution. Environ. Eng. Res. 2017;22:312-319.   DOI
45 Suresh S, Srivastava VC, Mishra IM. Adsorptive removal of phenol from binary aqueous solution with aniline and 4-nitrophenol by granular activated carbon. Chem. Eng. J. 2011;171:997-1003.   DOI
46 Blanco-Martinez DA, Giraldo L, Moreno-Pirajan JC. Effect of the pH in the adsorption and in the immersion enthalpy of monohydroxylated phenols from aqueous solutions on activated carbons. J. Hazard. Mater. 2009;169:291-296.   DOI
47 Suresh S, Srivastava VC, Mishra IM. Adsorption of hydroquinone in aqueous solution by granular activated carbon. J. Environ. Eng. 2011;137:1145-1157.   DOI
48 Srivastava VC, Patil D, Srivastava KK. Parameteric optimization of dye removal by electrocoagulation using Taguchi methodology. Int. J. Chem. Reactor Eng. 2011;9:article A8.
49 Wang X, Lu M, Wang H, Pei Y, Rao H, Du X. Three-dimensional graphene aerogels-mesoporous silica frameworks for superior adsorption capability of phenols. Sep. Purif. Technol. 2015;153:7-13.   DOI
50 Wang W, Pan S, Xu R, Zhang J, Wang S, Shen J. Competitive adsorption behaviors, characteristics, and dynamics of phenol, cresols, and dihydric phenols onto granular activated carbon. Desalin. Water Treat. 2015;56:770-778.   DOI
51 Gosu V, Dhakar A, Sikarwar P, Kumar UKA, Subbaramaiah V, Zhang TC. Wet peroxidation of resorcinol catalyzed by copper impregnated granular activated carbon. J. Environ. Manage. 2018;223:825-833.   DOI
52 Wang Y, Wei H, Zhao Y, Sun W, Sun C. The optimization, kinetics and mechanism of m-cresol degradation via catalytic wet peroxide oxidation with sludge-derived carbon catalyst. J. Hazard. Mater. 2017;326:36-46.   DOI
53 Olufemi BA, Otolorin F. Comparative adsorption of crude oil using mango (Mangnifera indica) shell and mango shell activated carbon. Environ. Eng. Res. 2017;22:384-392.   DOI
54 El-Ashtoukhy E-SZ, El-Taweel YA, Abdelwahab O, Nassef EM. Treatment of petrochemical wastewater containing phenolic compounds by electrocoagulation using a fixed bed electrochemical reactor. Int. J. Electrochem. Sci. 2013;8:1534-1550.
55 Sheftel VO. Handbook of toxic properties of monomers and additives. Boca Raton, FL: Lewis Publishers; 1995.
56 Colinas RJ, Burkart PT, Lawrence DA. In vitro effects of hydroquinone, benzoquinone, and doxorubicin on mouse and human bone marrow cells at physiological oxygen partial pressure. Toxicol. Appl. Pharmacol. 1994;129:95-102.   DOI
57 Prabhakaran DI, Basha CA, Kannadasan, T, Aravinthan P. Removal of hydroquinone from water by electrocoagulation using flow cell and optimization by response surface methodology. J. Environ. Sci. Health A Toxic. Hazard. Subst. Environ. Eng. 2010;45:400-412.   DOI
58 Anand MV, Srivastava VC, Singh S, Bhatnagar R, Mall ID. Electrochemical treatment of alkali decrement wastewater containing terephthalic acid using iron electrodes. J. Taiwan Inst. Chem. Eng. 2014;45:908-913.   DOI
59 Enache TA, Oliveira-Brett AM. Phenol and para-substituted phenols electrochemical oxidation pathways. J. Electroanal. Chem. 2011;655:9-16.   DOI
60 Akai N, Kawai A, Shibuya K. Water assisted photo-oxidation from hydroquinone to p-benzoquinone in a solid Ne matrix. J. Photochem. Photobiol. A Chem. 2011;223:182-188.   DOI
61 Tudorachea M, Mahalub D, Teodorescuc C, Stand R, Balae C, Parvulescua VI. Biocatalytic microreactor incorporating HRP anchored onmicro-/nano-lithographic patterns for flow oxidation of phenols. J. Mol. Catal. B Enzym. 2011;69:133-139.   DOI
62 Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918;40:1361-1403.   DOI
63 Fortunya A, Fontb J, Fabregat A. Wet air oxidation of phenol using active carbon as catalyst. Appl. Catal. B Environ. 1998;19:165-173.   DOI
64 Ting WP, Huang YH, Lu MC. Oxidation of 2,6-dimethylaniline by the Fenton, electro-Fenton and photoelectro-Fenton processes. J. Environ. Sci. Health A Toxic Hazard. Subst. Environ. Eng. 2011;46:1085-1091.   DOI
65 Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34:451-465.   DOI
66 Rameshraja D, Srivastava VC, Kushwaha JP, Mall ID. Quinoline adsorption onto granular activated carbon and bagasse fly ash. Chem. Eng. J. 2012;181-182:343-351.   DOI
67 Weber WJ, Morris JC. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. ASCE 1963;89:31-60.   DOI
68 Boyd GE, Adamson AW, Meyers LS. The exchange adsorption of ions from aqueous solution by organic zeolites. II. Kinetics. J. Am. Chem. Soc. 1947;69:2836-2848.   DOI
69 Vermeulen T. Theory for irreversible and constant-pattern solid diffusion. Ind. Eng. Chem. 1953;45:1664-1670.   DOI
70 Freundlich HMF. Over the adsorption in solution. J. Phys. Chem. 1906;57:385-471.
71 Temkin MI, Pyzhev V. Kinetics of ammonia synthesis on promoted iron catalyst. Acta Physicochim. URSS 1940;12:327-356.
72 Redlich O, Peterson DL. A useful adsorption isotherm. J. Phys. Chem. 1959;63:1024-1026.   DOI
73 Chatterjee IB. Process for the isolation of a major harmful oxidant from cigarette smoke. Patent No.: US 6782891 B2, 2004.
74 Franz M, Arafat HA, Pinto NG. Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon. Carbon 2000;38:1807-1819.   DOI
75 Park HS, Koduru JR, Choo KH, Lee B. Activated carbons impregnated with iron oxide nanoparticles for enhanced removal of bisphenol A and natural organic matter. J. Hazard. Mater. 2015;286:315-324.   DOI