Browse > Article
http://dx.doi.org/10.14773/cst.2022.21.1.53

Oxidation of Fe-(5.3-29.8)%Mn-(1.1-1.9)%Al-0.45%C Alloys at 550-650 ℃  

Park, Soon Yong (R&D Center, PIM KOREA)
Xiao, Xiao (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
Kim, Min Ji (School of Advanced Materials Application, Korea Polytechnics)
Lee, Geun Taek (R&D Center, PIM KOREA)
Hwang, Dae Ho (R&D Center, PIM KOREA)
Woo, Young Ho (R&D Center, PIM KOREA)
Lee, Dong Bok (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
Publication Information
Corrosion Science and Technology / v.21, no.1, 2022 , pp. 53-61 More about this Journal
Abstract
Alloys of Fe-(5.3-29.8)%Mn-(1.1-1.9)%Al-(0.4-0.5)%C were oxidized at 550 ℃ to 650 ℃ for 20 h to understand effects of alloying elements on oxidation. Their oxidation resistance increased with increasing Mn level to a small extent. Their oxidation kinetics changed from parabolic to linear when Mn content was decreased and temperature was increasing. Oxide scales primarily consisted of Fe2O3, Mn2O3, and MnFe2O4 without any protective Al-bearing oxides. During oxidation, Fe, Mn, and a lesser amount of Al diffused outward, while oxygen diffused inward to form internal oxides. Both oxide scales and internal oxides consisted of Fe, Mn, and a small amount of Al. The oxidation of Mn and carbon transformed γ-matrix to α-matrix in the subscale. The oxidation led to the formation of relatively thick oxide scales due to inherently inferior oxidation resistance of alloys and the formation of voids and cracks due to evaporation of manganese, decarburization, and outward diffusion of cations across oxides.
Keywords
High-Mn steel; Oxidation; Oxide scale; Iron; Manganese;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H. Buscail and J. P. Larpin, The Influence of Ceria Surface Additions on Manganese Oxidation at High Temperatures, Oxidation of Metals, 43, 237 (1995). Doi: https://doi.org/10.1007/BF01047029   DOI
2 P. R. S. Jackson and G. R. Wallwork, High Temperature Oxidation of Iron-Manganese-Aluminum Based Alloys, Oxidation of Metals, 21, 135 (1984). Doi: https://doi.org/10.1007/bf00741468   DOI
3 S. O. Kim, J. K. Hwang, and S. J. Kim, Effect of Alloying Elements (Cu, Al, Si) on the Electrochemical Corrosion Behaviors of TWIP Steel in a 3.5 % NaCl Solution, Corrosion Science and Technology, 18, 300 (2019). Doi: https://doi.org/10.14773/cst.2019.18.6.300   DOI
4 S. H. Kim, J. Y. Huh, M. S. Kim, and J. S. Kim, Effects of Oxygen Partial Pressure on Oxidation Behavior of CMnSi TRIP Steel in an Oxidation-Reduction Scheme, Corrosion Science and Technology, 16, 15 (2017). Doi: https://doi.org/10.14773/cst.2017.16.1.15   DOI
5 J. G. Duh, J. W. Lee, and C. J. Wang, Microstructural Development in the Oxidation-induced Phase Transformation of Fe-Al-Cr-Mn-C Alloys, Journal of Materials Science, 23, 2649 (1988). Doi: https://doi.org/10.1007/BF01111928   DOI
6 J. Moon, S. J. Park, and C. H. Lee, Current Status on Development of Lightweight Steels and Welding Characteristics, Journal of Welding and Joining, 38, 333 (2020). Doi: https://doi.org/10.5781/JWJ.2020.38.4.1   DOI
7 O. Bouaziz, S. Allain, C. Scott, P. Cugy, and D. Barbier, High Manganese Austenitic Twinning Induced Plasticity Steels: A Review of the Microstructure Properties Relationships, Current Opinion in Solid State and Materials Science, 15, 141 (2011). Doi: https://doi.org/10.1016/j.cossms.2011.04.002   DOI
8 S. W. Park, J. Y. Park, K. M. Cho, J. H. Jang, S. J. Park, J. Moon, T. H. Lee, and J. H. Shin, Effect of Mn and C on Age Hardening of Fe-Mn-Al-C Lightweight Steels, Metals and Materials International, 25, 683 (2019). Doi: https://doi.org/10.1007/s12540-018-00230-x   DOI
9 F. Gesmundo, C. de Asmundis, and C. Bottino, High-Temperature Corrosion of Manganese in Pure SO2, Oxidation of Metals, 14, 15 (1980). Doi: https://doi.org/10.1007/BF00604101   DOI
10 V. D. F. C. Lins, M. A. Freitas, and E. M. D. P. e Silva, Oxidation Kinetics of an Fe-31.8Mn-6.09Al-1.60Si0.40C Alloys at Temperature from 600 to 900℃, Corrosion Science, 46, 1895 (2004). Doi: http://doi.org/10.1016/j.corsci.2003.10.015   DOI
11 K. Fueki and J. B. Wagner, Oxidation of Manganese in CO2-CO Mixtures, Journal of The Electrochemical Society, 112, 970 (1965). Doi: https://doi.org/10.1149/1.2423353   DOI
12 F. Gesmundo, P. Nanni, and D. P. Whittle, High Temperature Oxidation of Co-Mn Alloys, Corrosion Science, 19, 675 (1979). Doi: https://doi.org/10.1016/S0010-938X(79)80140-7   DOI
13 N. Birks and G. H. Meier, Introduction to High Temperature Oxidation of Metals, p.72, Edward Arnold, London (1983). Doi: https://doi.org/10.1017/CBO9781139163903   DOI
14 L. Kjellqvist and M. Selleby, Thermodynamic Assessment of the Fe-Mn-O System, Journal of Phase Equilibria and Diffusion, 31, 113 (2010). Doi: https://doi.org/10.1007/s11669-009-9643-6   DOI
15 C. J. Wang and Y. C. Chang, Formation and Growth Morphology of Nodules in the High-Temperature Oxidation of Fe-Mn-Al-C Alloy, Materials Chemistry and Physics, 77, 738 (2003). Doi: https://doi.org/10.1016/S0254-0584(02)00134-7   DOI
16 E. B. Evans, C. A. Phalnikar, and W. M. Baldwin, High Temperature Scaling of Nickel-Manganese Alloys, Journal of the Electrochemical Society, 103, 367 (1956). Doi: https://doi.org/10.1149/1.2430358   DOI
17 I. Barin, Thermochemical Data of Pure Substances, 3rd ed., VCH, Germany (1989). Doi: https://doi.org/10.1002/9783527619825   DOI
18 F. H. Stott, F. I. Wei, and C. A. Enahoro, The Influence of Manganese on the High-Temperature Oxidation of Iron-chromium Alloys, Materials and Corrosion, 40, 198 (1989). Doi: https://doi.org/10.1002/maco.19890400403   DOI
19 A. Muan and S. Somiya, The System Iron Oxide-Manganese Oxide in Air, American Journal of Science, 260, 230 (1962). Doi: https://doi.org/10.2475/ajs.260.3.230   DOI
20 N. Bertrand, C. Desgranges, D. Poquillon, M. C. Lafont, and D. Monceau, Iron Oxidation at Low Temperature (260-500 ℃) in Air and the Effect of Water Vapor, Oxidation of Metals, 73, 139 (2010). Doi: https://doi.org/10.1007/s11085-009-9171-0   DOI
21 J. G. Duh and C. J. Wang, Formation and Growth Morphology of Oxidation-induced Ferrite Layer in Fe-MnAl-Cr-C Alloys, Journal of Materials Science, 25, 2063 (1990). Doi: https://doi.org/10.1007/BF01045765   DOI
22 J. G. Duh and C. J. Wang, High Temperature Oxidation of Fe-31 Mn-9Al-xCr-0.87C Alloys (x = 0, 3 and 6), Journal of Materials Science, 25, 268 (1990). Doi: https://doi.org/10.1007/BF00544219   DOI
23 J. P. Sauer, R. A. Rapp, and J. P. Hirth, Oxidation of Iron-Manganese-Aluminum Alloys at 850 and 1000 ℃, Oxidation of Metals, 18, 285 (1982). Doi: https://doi.org/10.1007/BF00656572   DOI
24 P. Perez, F. J. Perez, C. Gomez, and P. Adevaa, Oxidation Behaviour of an Austenitic Fe-30Mn-5Al-0.5C Alloy, Corrosion Science, 44, 113 (2002). Doi: https://doi.org/10.1016/S0010-938X(01)00043-9   DOI