DOI QR코드

DOI QR Code

Reaction Kinetics with Hydrogen and Temperature Dependence of the Hydriding Rate for a Magnesium-Based Nickel Iron Oxide Alloy

  • Song, Myoung Youp (Division of Advanced Materials Engineering, Hydrogen & Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University) ;
  • Baek, Sung Hwan (Division of Advanced Materials Engineering, Hydrogen & Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University) ;
  • Park, Hye Ryoung (School of Applied Chemical Engineering, Chonnam National University)
  • Received : 2011.12.02
  • Published : 2012.06.25

Abstract

A 71.5 wt%Mg-23.5 wt%Ni-5 wt%$Fe_2O_3$ (Mg-23.5Ni-$5Fe_2O_3$) sample was prepared by a quite simple process, reactive mechanical grinding, and its hydriding and dehydriding properties were then investigated. The reactive mechanical grinding of Mg with Ni and $Fe_2O_3$ is considered to facilitate nucleation and shorten the diffusion distances of the hydrogen atoms. After the hydriding-dehydriding cycling, the Mg-23.5Ni-$5Fe_2O_3$ sample contained $Mg_2Ni$ phase. Expansion and contraction of the hydride-forming materials (Mg and $Mg_2Ni$) with the hydriding and dehydriding reactions are also considered to increase the hydriding and dehydriding rates of the mixture by forming defects and cracks leading to the fragmentation of the particles. The temperature dependence of the hydriding rate of the sample is discussed.

Keywords

References

  1. J. S. Han and K. D. Park, Korean J. Met. Mater. 48, 1123 (2010).
  2. J. J. Reilly and R. H. Wiswall, Inorg. Chem. 6, 2220 (1967). https://doi.org/10.1021/ic50058a020
  3. J. J. Reilly and R. H. Wiswall, Inorg. Chem. 7, 2254 (1968). https://doi.org/10.1021/ic50069a016
  4. M. H. Mintz, Z. Gavra, and Z. Hadari, J. Inorg. Nucl. Chem. 40, 765 (1978). https://doi.org/10.1016/0022-1902(78)80147-X
  5. M. Pezat, A. Hbika, B. Darriet, and P. Hagenmuller, Mater. Res. Bull. 14, 377 (1979). https://doi.org/10.1016/0025-5408(79)90103-X
  6. E. Akiba, K. Nomura, S. Ono, and S. Suda, Int. J. Hydrogen Energy 7, 787 (1982). https://doi.org/10.1016/0360-3199(82)90069-6
  7. J. M. Boulet and N. Gerard, J. Less-Common Met. 89, 151 (1983). https://doi.org/10.1016/0022-5088(83)90261-8
  8. S. H. Hong, S. N. Kwon, and M. Y. Song, Korean J. Met. Mater. 49, 298 (2011).
  9. K. I. Kim and T. W. Hong, Korean J. Met. Mater. 49, 264 (2011). https://doi.org/10.3365/KJMM.2011.49.3.264
  10. B. Tanguy, J. L. Soubeyroux, M. Pezat, J. Portier, and P. Hagenmuller, Mater. Res. Bull. 11, 1441 (1976). https://doi.org/10.1016/0025-5408(76)90057-X
  11. F. G. Eisenberg, D. A. Zagnoli and J. J. Sheridan III, J. Less-Common Met. 74, 323 (1980). https://doi.org/10.1016/0022-5088(80)90170-8
  12. M. Y. Song, J. Mater. Sci. 30, 1343 (1995). https://doi.org/10.1007/BF00356142
  13. M. Y. Song, E. I. Ivanov, B. Darriet, M. Pezat, and P. Hagenmuller, Int. J. Hydrogen Energy 10, 169 (1985). https://doi.org/10.1016/0360-3199(85)90024-2
  14. M. Y. Song, E. I. Ivanov, B. Darriet, M. Pezat, and P. Hagenmuller, J. Less-Common Met. 131, 71 (1987). https://doi.org/10.1016/0022-5088(87)90502-9
  15. M. Y. Song, Int. J. Hydrogen Energy 20, 221 (1995). https://doi.org/10.1016/0360-3199(94)E0024-S
  16. J. L. Bobet, E. Akiba, Y. Nakamura, and B. Darriet, Int. J. Hydrogen Energy 25, 987 (2000). https://doi.org/10.1016/S0360-3199(00)00002-1
  17. C. D. Yim, B. S. You, Y. S. Na, and J. S. Bae, Catalysis Today 120, 276 (2007). https://doi.org/10.1016/j.cattod.2006.09.020
  18. M. Y. Song, I. H. Kwon, S. N. Kwon, C. G. Park, S. H. Hong, D. R. Mumm, and J. S. Bae, J. Alloys Compds. 415, 266 (2006). https://doi.org/10.1016/j.jallcom.2005.08.002
  19. M. Y. Song, S. H. Baek, J. L. Bobet, and S. H. Hong, Int. J. Hydrogen Energy 35, 10366 (2010). https://doi.org/10.1016/j.ijhydene.2010.07.161
  20. M. Y. Song, J. Alloys Compds. 282, 297 (1999). https://doi.org/10.1016/S0925-8388(98)00848-2
  21. M. Y. Song, H. R. Park, J. Alloys Compds. 270, 164 (1998). https://doi.org/10.1016/S0925-8388(98)00459-9
  22. M .Y. Song, M. Pezat, B. Darriet, J. Y. Lee, and P. Hagenmuller, J. Mater. Sci. 21, 346 (1986). https://doi.org/10.1007/BF01144743
  23. S. H. Baek, ME thesis, Improvement of the hydrogenstorage properties of Mg by the addition of Ni, Fe and $Fe_{2}O_{3}$ and reactive mechanical grinding, Chonbuk National University (2009).