• Title/Summary/Keyword: ion conductivity

Search Result 850, Processing Time 0.031 seconds

The thermal impedance spectroscopy on Li-ion batteries using heat-pulse response analysis

  • Barsoukov Evgenij;Jang Jee Hwan;Lee Hosull
    • 한국전기화학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.145-161
    • /
    • 2001
  • Novel characterization of thermal properties of a battery has been introduced by defining its frequency-dependent thermal impedance function. Thermal impedance function can be approximated as a thermal impedance spectrum by analyzing experimental temperature transient which is related to the thermal impedance function through Laplace transformation. In order to obtain temperature transient, a process has been devised to generate external heat pulse with heating wire and to measure the response of battery. This process is used to study several commercial Li-ion batteries of cylindrical type. The thermal impedance measurements have been performed using potentionstat/galvanostate controlled digital signal processor, which is more commonly available than flow-meter usually applied for thermal property measurements. Thermal impedance spectra obtained for batteries produced by different manufactures are found to differ considerably. Comparison of spectra at different states of charge indicates independence of thermal impedance on charging state of battery. It is shown that thermal impedance spectrum can be used to obtain simultaneously thermal capacity and thermal conductivity of battery by non-linear complex least-square fit of the spectrum to thermal impedance model. Obtained data is used to simulate a response of the battery to internal heating during discharge. It is found that temperature inside the battery is by one-third larger that on its surface. This observation has to be considered to prevent damage by overheating.

  • PDF

The Electrochemical Performance of Li3V2(PO4)3/Graphene Nano-powder Composites as Cathode Material for Li-ion Batteries

  • Choi, Mansoo;Kim, Hyun-Soo;Lee, Young Moo;Jin, Bong-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.109-114
    • /
    • 2014
  • The $Li_3V_2(PO_4)_3$/graphene nano-particles composite was successfully synthesized by a facile sol-gel method. The addition of a graphene in $Li_3V_2(PO_4)_3(LVP)$(LVP) showed the high crystallinity and influenced the morphology of the $Li_3V_2(PO_4)_3$ particles observed in X-ray diffraction (XRD) and scanning electron microscopy (SEM). The LVP/graphene samples were well connected, resulting in fast charge transfer. The effect of the addition graphene nano-particles on electrochemical performance of the materials was investigated. Compared with the pristine LVP, the LVP/graphene composite delivered a higher discharge capacity of $122mAh\;g^{-1}$ at 0.1 C-rate, better rate capability and cyclability in the potential range of 3.0-4.3 V. The electrochemical impedance spectra (EIS) measurement showed the improved electronic conductivity for the LVP/graphene composite, which can ensure the high specific capacity and rate capability.

Preparation of Sulfonated PolySEBS/PS Blending Films (술폰화된 PolySEBS/PS Blending 필름의 제조)

  • Jang, Suk-Yong;Han, Sien-Ho
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.205-208
    • /
    • 2008
  • Sulfonated polySEBS and sulfonated PS were synthesized by sulfonation at the aromatic group of polySEBS and PS. Novel sulfonated polySEBS/sulfonated PS blending films for the ion exchange membrane of polymer electrolyte fuel cell were prepared from these sulfonated polymers. The proton conductivities of these blending films were varied in $10^{-2}{\sim}10^{-3}S/cm$ with the blending ratio of sulfonated polySEBS/sulfonated PS. Especially, the film prepared from the addition of the sulfonated PS (0.5 g) in the sulfonated polySEBS (10.0 g) has the best proton conductivity (0.07 S/cm) with ion exchange capacity (0.75 meq/g) and water uptake (25%).

Electrochemical Properties of SiOx Anodes with Conductive Agents for Li Ion Batteries (도전재 종류에 따른 리튬이차전지 음극재 SiOx의 전기화학적 특성)

  • Yun, Ji-Su;Jang, Boyun;Kim, Sung-Soo;Kim, Hyang-Yeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.179-186
    • /
    • 2019
  • This work investigated the effects of different conductive agents on the electrochemical properties of anodes. SiOx possesses high theoretical capacity and shows excellent cycle performance; however, the low initial coulombic efficiency and poor electrical conductivity limit its applications in real batteries. In this study, electrodes were fabricated using two different conductive agents, and the resulting physical and electrochemical properties were analyzed. SEM observations confirmed the formation of a CNT conductive network throughout the electrodes, while the electrical conductivity contributed to the electrode was confirmed by impedance measurements. Thus, the electrode fabricated with the CNT conductive agent showed greater capacity and superior cycle performance than did the electrode fabricated using the DB conductive agent.

Silicon-Based Anode with High Capacity and Performance Produced by Magnesiothermic Coreduction of Silicon Dioxide and Hexachlorobenzene

  • Ma, Kai
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.317-322
    • /
    • 2021
  • Silicon (Si) has been considered as a promising anode material because of its abundant reserves in nature, low lithium ion (Li+) intercalation/de-intercalation potential (below 0.5 V vs. Li/Li+) and high theoretical capacity of 4200 mA h/g. In this paper, we prepared a silicon-based (Si-based) anode material containing a small amount of silicon carbide by using magnesiothermic coreduction of silica and hexachlorobenzene. Because of good conductivity of silicon carbide, the cycle performance of the silicon-based anode materials containing few silicon carbide is greatly improved compared with pure silicon. The raw materials were formulated according to a silicon-carbon molar ratio of 10:0, 10:1, 10:2 and 10:3, and the obtained products were purified and tested for their electrochemical properties. After 1000 cycles, the specific capacities of the materials with silicon-carbon molar ratios of 10:0, 10:1, 10:2 and 10:3 were still up to 412.3 mA h/g, 970.3 mA h/g, 875.0 mA h/g and 788.6 mA h/g, respectively. Although most of the added carbon reacted with silicon to form silicon carbide, because of the good conductivity of silicon carbide, the cycle performance of silicon-based anode materials was significantly better than that of pure silicon.

Characteristics of $K_2NiF_4$-Type Oxides $(Sr,Sm)_2FeO_{~4}$

  • 요철현;이은석
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.321-324
    • /
    • 1996
  • Sr1+xSm1-xFeO4-y solid solutions with a composition range 0.00 ≤x≤1.00 have been prepared at 1200 ℃ in air under normal atmospheric pressure. All the solutions exhibit the K2NiF4-type structure of tetragonal system. Mohr salt analysis shows that the mole ratio of Fe4+ ion to Fe3+ ion or the τ value increases with the x value. Nonstoichiometric chemical formulas have been formulated from the x, τ, and y values. Electrical conductivity was measured in the temperature range of 173-373 K under atmospheric air pressure. The conductivities of each sample are varied within the semiconductivity range. The conductivity at constant temperature increases steadily with x value and activation energies are varied from 0.14 to 0.32 eV. The conduction mechanism of the ferrite system may be proposed as a hopping model of conduction electrons between the mixed valence states. The Mossbauer spectrum for the composition of x=0.00 shows a six line pattern by which the existence of Fe3+(I.S.=0.32 mm/sec) can only be identified. The spectra for the compositions of x=0.50 and 1.00 presents broad single line patterns showing a mixed valence state.

Poly(vinyl alcohol) based Solid Polymer Electrolyte with Fast Cationic Transport Process

  • Jo, Yun-Kyung;Lee, Yu-Jin;Jo, Nam-Ju
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.187-187
    • /
    • 2006
  • A new type solid polymer electrolyte (SPE) composed of poly (vinyl alcohol) (PVA) and lithium trifluoromethanesulfonate ($LiCF_{3}SO_{3}$) was prepared by means of the solution cast technique to observe that Li ion can move by ion hopping decoupled from polymer segmental motion inside of the 'fast cationic transport process'. The highest ion conductivity of the SPEs obtained from ac impedance measurements was $1.42{\times}10^{-3}S/cm$ at room temperature for SPE with 80wt% of salt concentration. Using LSV, we found that the SPEs had good electrochemical stabilities and using FT-IR and AFM, we found the formation of network-like structure.

  • PDF

Design of Single Ion Conductive Solid Polymer Electrolytes Utilizing the Characteristics of the Boron Atom

  • Matsumi, Noriyoshi;Ohno, Hiroyuki
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.275-275
    • /
    • 2006
  • A series of organoboron polymer electrolytes were prepared and their ion conductive characteristics was investigated in detail. Alkylborane type polymer electrolytes prepared by hydroboration polymerization exhibited improve lithium transference number due to efficient anion trapping of alkylborane unit. A lithium borate type polymer/salt hybrid was also successfully prepared by dehydrocoupling polymerization of lithium mesitylhydrorate. Ionic conductivity of single ion conductive polymer/salt hybrid was further improved in the case of comb like polymer/boron stabilized imido anion hybrid prepared via polymer reaction of poly(organoboron halide) with hexylamine and PEO monomethylether and subsequent neutralization with lithium hydride.

  • PDF

Sulfonated PEEK Ion Exchange Membranes for Direct Methanol Fuel Cell Applications

  • Moon, Go-Young;Rhim, Ji-Won
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.379-384
    • /
    • 2007
  • Sulfonation of polyetheretherketones (PEEK) was carried out in order to fabricate commercial perfluorosulfonic acid membrane alternatives, which were characterized in terms of their ion exchange capacity, ionic conductivity, water swelling, methanol crossover and electrochemical performance in their direct application as a methanol fuel cell. A high ion exchange capacity, 1.88, was achieved with a sulfonation reaction time of 8 h, with a significantly low methanol crossover low compared to that of Nafion. However, the morphological stability was found to deteriorate for membranes with sulfonation reaction times exceeding 8 h. Electrochemical cell tests suggested that the fabrication parameters of the membrane electrode assembly based on the sulfonated PEEK membranes should be optimized with respect to the physicochemical properties of the newly prepared membranes.

A brief review on graphene applications in rechargeable lithium ion battery electrode materials

  • Akbar, Sameen;Rehan, Muhammad;Liu, Haiyang;Rafique, Iqra;Akbar, Hurria
    • Carbon letters
    • /
    • v.28
    • /
    • pp.1-8
    • /
    • 2018
  • Graphene is a single atomic layer of carbon atoms, and has exceptional electrical, mechanical, and optical characteristics. It has been broadly utilized in the fields of material science, physics, chemistry, device fabrication, information, and biology. In this review paper, we briefly investigate the ideas, structure, characteristics, and fabrication techniques for graphene applications in lithium ion batteries (LIBs). In LIBs, a constant three-dimensional (3D) conductive system can adequately enhance the transportation of electrons and ions of the electrode material. The use of 3D graphene and graphene-expansion electrode materials can significantly upgrade LIBs characteristics to give higher electric conductivity, greater capacity, and good stability. This review demonstrates several recent advances in graphene-containing LIB electrode materials, and addresses probable trends into the future.