Browse > Article
http://dx.doi.org/10.5229/JECST.2014.5.4.109

The Electrochemical Performance of Li3V2(PO4)3/Graphene Nano-powder Composites as Cathode Material for Li-ion Batteries  

Choi, Mansoo (Battery Research Center, Korea Electrotechnology Research Institute)
Kim, Hyun-Soo (Battery Research Center, Korea Electrotechnology Research Institute)
Lee, Young Moo (Dept. of Energy Engineering, Hanyang University)
Jin, Bong-Soo (Battery Research Center, Korea Electrotechnology Research Institute)
Publication Information
Journal of Electrochemical Science and Technology / v.5, no.4, 2014 , pp. 109-114 More about this Journal
Abstract
The $Li_3V_2(PO_4)_3$/graphene nano-particles composite was successfully synthesized by a facile sol-gel method. The addition of a graphene in $Li_3V_2(PO_4)_3(LVP)$(LVP) showed the high crystallinity and influenced the morphology of the $Li_3V_2(PO_4)_3$ particles observed in X-ray diffraction (XRD) and scanning electron microscopy (SEM). The LVP/graphene samples were well connected, resulting in fast charge transfer. The effect of the addition graphene nano-particles on electrochemical performance of the materials was investigated. Compared with the pristine LVP, the LVP/graphene composite delivered a higher discharge capacity of $122mAh\;g^{-1}$ at 0.1 C-rate, better rate capability and cyclability in the potential range of 3.0-4.3 V. The electrochemical impedance spectra (EIS) measurement showed the improved electronic conductivity for the LVP/graphene composite, which can ensure the high specific capacity and rate capability.
Keywords
Lithium vanadium phosphate; graphene nano-powder; electrical conductivity; Li-ion battery;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Kang and G. Ceder, Nature, 458, 190 (2009).   DOI   ScienceOn
2 X. Wang, X. Cao, L. Bourgeois, H. Guan, S. Chen, Y. Zhong, D. M. Tang, H. Li, T. Zhai and L. Li, Adv. Funct. Mater., 22, 2682 (2012).   DOI   ScienceOn
3 H. Song, K. T. Lee, M. G. Kim, L. F. Nazar and J. Cho, Adv. Funct.Mater., 20, 3818 (2010).   DOI   ScienceOn
4 J. Gopalakrishnan, K.K. Rangan, Chem. Mater. 4, 745, (1992).   DOI
5 M.Y. Saidi, J. Barker, H. Huang, J.L. Swoyer, and G. Adamson, Electrochem. Solid State Lett. 5, A149 (2002).   DOI   ScienceOn
6 S.C. Yin, H. Grondey, P. Strobel, M. Anne, L.F. Nazar, and J. Am. Chem. Soc. 125, 10402 (2003).   DOI   ScienceOn
7 S.C. Yin, H. Grondey, P. Strobel, H. Huang, L.F. Nazar, and J. Am. Chem. Soc. 125, 326 (2003).   DOI   ScienceOn
8 H. Huang, S.C. Yin, T. Kerr, N. Taylor, and L.F. Nazar, Adv. Mater. 14, 1525 (2002).   DOI
9 M.Y. Saidi, J. Barker, H. Huang, J.L. Swoyer, and G. Adamson, J. Power Sources 266, 119 (2003).
10 X. Rui, N. Ding, J. Liu, C. Li, and C. Chen, Electrochim. Acta, 55, 2384 (2010).   DOI   ScienceOn
11 A. Pan, J. Liu, J. G. Zhang, W. Xu, G. Cao, Z. Nie, B. W. Arey, and S. Liang, Electrochem. Commun., 12, 1674 (2010).   DOI   ScienceOn
12 P. Fu, Y. Zhao, Y. Dong, X. An, and G. Shen, J. Power Sources, 162, 651 (2006).   DOI   ScienceOn
13 Q. Chen, X. Qiao, Y. Wang, T. Zhang, C. Peng, W. Yin, and L. Liu, J. Power Sources, 201, 267 (2012).   DOI   ScienceOn
14 Y. Chen, Y. Zhao, X. An, J. Liu, Y. Dong, and L. Chen, Electrochim. Acta, 54, 5844 (2009).   DOI   ScienceOn
15 C. Dai, Z. Chen, H. Jin, and X. Hu, J. Power Sources, 195, 5775 (2010).   DOI   ScienceOn
16 M. Bini, S. Ferrari, D. Capsoni, and V. Massarotti, Electrochim. Acta, 56, 2648 (2011).   DOI   ScienceOn
17 C. Sun, S. Rajasekhara, Y. Dong, and J. B. Goodenough, ACS Appl. Mater. Interfaces, 3, 3772 (2011).   DOI   ScienceOn
18 X. Du, W. He, X. Zhang, Y. Yue, H. Liu, D. Min, X. Ge, and Y. Du, J. Mater. Chem., 22, 5960 (2012).   DOI   ScienceOn
19 C. Chang, J. Xiang, X. Shi, X. Han, L. Yuan, and J. Sun, Electrochim. Acta, 54, 623 (2008).   DOI   ScienceOn
20 L. Wang, L. C. Zhang, I. Lieberwirth, H. W. Xu, and C. H. Chen, Electrochem. Commun., 12, 52 (2010).   DOI   ScienceOn
21 Y. Qiao, X. Wang, J. Xiang, D. Zhang, W. Liu, and J. Tu, Electrochim. Acta, 56, 2269 (2011).   DOI   ScienceOn
22 H. Liu, P. Gao, J. Fang, and G. Yang, Chem. Commun., 47, 9110 (2011).   DOI   ScienceOn
23 L. Fei, W. Lu, Li Sun, J. Wang, J. Wei, H.L.W. Chan, and Y. Wang, RSC Adv., 3, 1297 (2013).   DOI   ScienceOn
24 A. Ferrari and J. Robertson, Phys. Rev. B: Condens. Matter, 61, 14095 (2000).   DOI
25 J.S. Huang, L. Yang, K.Y. Liu, and Y.F. Tang, J. Power Sources, 195, 5013 (2010).   DOI   ScienceOn
26 J.W. Wang, J. Liu, G.L. Yang, X.F. Zhang, X.D. Yan, X.M. Pan, and R.S. Wang, Electrochim. Acta, 54, 6451 (2009).   DOI   ScienceOn
27 Y.Q. Qiao, J.P. Tu, X.L. Wang, D. Zhang, J.Y. Xiang, Y.J. Mai, and C.D. Gu, J. Power Sources, 196, 7715 (2011).   DOI   ScienceOn
28 C.M. Burba and R. Frech, Solid State Ionics, 177, 3445 (2007).   DOI   ScienceOn
29 L. Wang, G.C. Liang, X.Q. Ou, X.K. Zhi, J.P. Zhang, and J.Y. Cui, J. Power Sources, 189, 423 (2009).   DOI   ScienceOn
30 M.Y. Saidi, J. Barker, H. Huang, J.L. Swoyer, and G. Adamson, Electrochem. Solid State Lett. 5, A149 (2002).   DOI   ScienceOn
31 X. Zhu, Y. Liu, L. Geng, and L. Chen, J. Power Sources, 184, 578 (2008).   DOI   ScienceOn
32 L. Wang, X. Zhou, and Y. Guo, J. Power Sources, 195, 2844 (2010).   DOI   ScienceOn
33 X.H. Huang, J.P. Tu, C.Q. Zhang, X.T. Chen, Y.F. Yuan, and H.M. Wu, Electrochim. Acta, 52, 4177 (2007).   DOI   ScienceOn
34 M. Takahashi, S.-I. Tobishima, K. Takei, and Y. Sakurai, Solid State Ionics, 148, 283, (2002).   DOI   ScienceOn
35 S.B. Yang, H.H. Song, and X.H. Chen, Electrochem. Commun., 8, 137 (2006).   DOI   ScienceOn
36 S. Grugeon, S. Laruelle, R. Herrera-Urbina, L. Dupont, P. Poziot, J.M. Tarascon, J. Electrochem. Soc., 148, A285 (2001).   DOI   ScienceOn