Browse > Article
http://dx.doi.org/10.33961/jecst.2020.01662

Silicon-Based Anode with High Capacity and Performance Produced by Magnesiothermic Coreduction of Silicon Dioxide and Hexachlorobenzene  

Ma, Kai (Heze University)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.3, 2021 , pp. 317-322 More about this Journal
Abstract
Silicon (Si) has been considered as a promising anode material because of its abundant reserves in nature, low lithium ion (Li+) intercalation/de-intercalation potential (below 0.5 V vs. Li/Li+) and high theoretical capacity of 4200 mA h/g. In this paper, we prepared a silicon-based (Si-based) anode material containing a small amount of silicon carbide by using magnesiothermic coreduction of silica and hexachlorobenzene. Because of good conductivity of silicon carbide, the cycle performance of the silicon-based anode materials containing few silicon carbide is greatly improved compared with pure silicon. The raw materials were formulated according to a silicon-carbon molar ratio of 10:0, 10:1, 10:2 and 10:3, and the obtained products were purified and tested for their electrochemical properties. After 1000 cycles, the specific capacities of the materials with silicon-carbon molar ratios of 10:0, 10:1, 10:2 and 10:3 were still up to 412.3 mA h/g, 970.3 mA h/g, 875.0 mA h/g and 788.6 mA h/g, respectively. Although most of the added carbon reacted with silicon to form silicon carbide, because of the good conductivity of silicon carbide, the cycle performance of silicon-based anode materials was significantly better than that of pure silicon.
Keywords
Lithium-Ion Battery; Silicon-Based Anode; Magnesiothermic Coreduction; Hexachlorobenzene;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. J. Park, H. D. Yoo, J. W. Lee, M. S. Park, Y. J. Kim, H. S. Kim, ACS Nano, 2015, 9, 7690-7696.   DOI
2 E. J. Park, J. H. Kim, D. J. Chung, M. S. Park, H. S. Kim, J. H. Kim, ChemSusChem, 2016, 9(19), 2754-2758.   DOI
3 B. Fuchsbichler, C. Stangl, H. Kren, F. Uhlig, S. Koller, J. Power Sources, 2011, 196(5), 2889-2892.   DOI
4 M. Gu, Y. He, J. Zheng, C. Wang, Nano Energy, 2015, 17, 366-383.   DOI
5 Q. Si, K. Hanai, N. Imanishi, M. Kubo, A. Hirano, Y. Takeda, O.Yamamoto, J. Power Sources, 2009, 189(1), 761-765.   DOI
6 J. G. Ryu, D. K. Hong, H. W. Lee, S. J. Park, Nano Res., 2017, 10, 3970-4002.   DOI
7 J . Ryu, D . Hong, S. Choi, S. Park, ACS Nano, 2016, 10(2), 2843-2851.   DOI
8 X. Li, P. Yan, B. W. Arey, W. Luo, Xiulei Ji, C. Wang, J. Liu, J. G. Zhang, Nano Energy, 2016, 20, 68-75.   DOI
9 M. Ge, J. Rong, X. Fang, A. Zhang, Y. Lu, C. Zhou, Nano Res., 2013, 6(3), 174-181.   DOI
10 S. K. Jeong, X. Li, J. Zheng, P. Yan, R. Cao, H. J. Jung, C. Wang, J. Liu, J. G. Zhang, J. Power Sources, 2016, 329, 323-329.   DOI
11 Y. Jin, B. Zhu, Z. Lu, N. Liu, J. Zhu, Adv. Energy Mater., 2017, 7(23), 1700715.   DOI
12 S. Huang, L. Z. Cheong, D. Wang, C. Shen, ACS Appl. Mater. Interfaces, 2017, 9(28), 23672-23678.   DOI
13 L . Yan, J. Liu, Q. Wang, M. Sun, Z. Jiang, C. Liang, F. Pan, Z. Lin, ACS Appl. Mater. Interfaces, 2017, 9(44), 38159-38164.   DOI
14 R. V., Salvatierra, A. R. O. Raji, S. K. Lee, Y. S. Ji, L. Li, J. M. Tour, Adv. Energy Mater., 2016, 6(24), 1600918.   DOI
15 W. Wang, L. Gu, H. Qian, M. Zhao, X. Ding, X. Peng, J. Sha, Y. Wang, J. Power Sources, 2016, 307, 410-415.   DOI
16 Yaolin Xu, Ellie Swaans, Sibo Chen, Shibabrata Basak, Peter Paul R. M. L. Harks, Bo Peng, Henny W. Zandbergen, Dana M. Borsa, Fokko M. Mulder, Nano Energy, 2017, 38, 477-485.   DOI
17 J. W. Lee, J. H. Moon, S. A. Han, J. Y. Kim, V. Malgras, Y. U. Heo, H. S. Kim, S. M. Lee, H. K. Liu, S. X. Dou, Y. Yamauchi, M. S. Park, J. H. Kim, ACS Nano, 2019, 13(7), 9607-9619.   DOI
18 N. Dimov, S. Kugino, M. Yoshio, Electrochim. Acta, 2003, 48 (11), 1579-1587.   DOI
19 W. J. Yu, C. Liu, L. Zhang, P. X. Hou, F. Li, B. Zhang, H. M. Cheng, Adv. Sci., 2016, 3(10), 1600113.   DOI
20 H. Chen, B. Zhang, X. Wang, P. Y. Dong, H. Tong, J. C. Zheng, W. J. Yu, J. F. Zhang, ACS Appl. Mater. Interfaces, 2018, 10(4), 3590-3595.   DOI
21 J. W. Lee, S. A. Han, S. M. Lee, M. S. Park, J. H. Kim, Composites, Part B, 2019, 174, 107024.   DOI
22 M. Nangir, A. Massoudi, Mater. Today: Proc., 2020.
23 M. A. Al-Maghrabi, Junji Suzuki, R. J. Sanderson, V. L. Chevrier, R. A. Dunlap, J. R. Dahn, J. Electrochem. Soc., 2013, 160(9), A1587.   DOI