Browse > Article

Sulfonated PEEK Ion Exchange Membranes for Direct Methanol Fuel Cell Applications  

Moon, Go-Young (CRD, Research Park, LG Chem., Ltd, Science Town)
Rhim, Ji-Won (Department of Chemical Engineering, Hannam University)
Publication Information
Macromolecular Research / v.15, no.4, 2007 , pp. 379-384 More about this Journal
Abstract
Sulfonation of polyetheretherketones (PEEK) was carried out in order to fabricate commercial perfluorosulfonic acid membrane alternatives, which were characterized in terms of their ion exchange capacity, ionic conductivity, water swelling, methanol crossover and electrochemical performance in their direct application as a methanol fuel cell. A high ion exchange capacity, 1.88, was achieved with a sulfonation reaction time of 8 h, with a significantly low methanol crossover low compared to that of Nafion. However, the morphological stability was found to deteriorate for membranes with sulfonation reaction times exceeding 8 h. Electrochemical cell tests suggested that the fabrication parameters of the membrane electrode assembly based on the sulfonated PEEK membranes should be optimized with respect to the physicochemical properties of the newly prepared membranes.
Keywords
direct methanol fuel cell; sulfonated PEEK; methanol crossover; membrane; fuel cell;
Citations & Related Records

Times Cited By Web Of Science : 12  (Related Records In Web of Science)
Times Cited By SCOPUS : 11
연도 인용수 순위
1 F. Helmer-Metzmann et al., US Patent 5,438,082 (1995)
2 R. Y. M. Huang, P. Shao, C. M. Burns, and X. Feng, J. Appl. Polym. Sci., 82, 2651 (2001)   DOI   ScienceOn
3 J. Wootthikanokkhan and N. Seeponkai, J. Appl. Polym. Sci., 102, 5941 (2006)
4 A. Basile, L. Paturzo, A. Iulianelli, I. Gatto, and E. Passalacqua, J. Membrane Sci., 281, 377(2006)
5 R. Jiang, H. R. Kunz, and J. M. Fenton, J. Power Sources, 150, 120 (2005)
6 V. K. Shahi, Solid State Ionics, 177, 3394 (2007)
7 T. Soczka-Guth et al., US Patent 6,355,149 (2002)
8 X. Li, Z. Wang, H. Lu, C. Zhao, H. Na, and C. Zhao, J. Membrane Sci., 254, 147 (2005)
9 R. K. Nagarale, G. S. Gohil and V. K. Shahi, J. Membrane Sci., 280, 389 (2006)   DOI
10 V. S. Silva, B. Ruffmann, S. Vetter, M. Boaventura, A. M. Mendes, L. M. Madeira, and S. P. Nunes, Electrochim. Acta, 51, 3699 (2006)
11 S. L. Chen, A. B. Bocarsly, and J. Benziger, J. Power Sources, 152, 27 (2005)
12 M. Gil, X. Ji, X. Li, H. Na, J. E. Hampsey, and Y. Lu, J. Membrane Sci., 234, 75 (2004)
13 K. D. Kreuer, 'Hydrocarbon membranes,' in Handbook of Fuel Cells, 2003, Chapter 33, Vol. 3
14 B. P. Pinto, L. C. de Santa Maria, and M. E. Sena, Materials Lett., submitted (2006)
15 L. Li and Y. Wang, J. Membrane Sci., 246, 167 (2005)
16 J. M. Song, K. Miyatake, H. Uchida, and M. Watanabe, Electrochim. Acta, 51, 4497 (2006)
17 P. Xing, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, K. Wang, and S. Kaliaguine, J. Membrane Sci., 229, 95 (2004)
18 Y.-Z. Fu and A. Manthiram, J. Power Sources, 157, 222 (2006)
19 X. Ye, H. Bai, and W. S. Winston Ho, J. Membrane Sci., 279, 570 (2006)
20 F. Lufrano, V. Baglio, P. Staiti, A. S. Arico, and V. Antonucci, Desalination, 199, 283 (2006)   DOI   ScienceOn
21 S. Xue and G. Yin, Eur. Polym. J., 42, 776 (2006)
22 S. Vetter, B. Ruffmann, I. Buder, and S. P. Nunes, J. Membrane Sci., 260, 181 (2005)
23 G. Y. Moon and W. H. Lee, Korean Membrane J., 5, 1 (2003)
24 J. Kerres, Fuel Cells, 6, 251 (2006)