Browse > Article
http://dx.doi.org/10.5714/CL.2018.28.001

A brief review on graphene applications in rechargeable lithium ion battery electrode materials  

Akbar, Sameen (Laboratory of Advance Materials and Nanotechnology, Department of Physics, University of Agriculture)
Rehan, Muhammad (Laboratory of Advance Materials and Nanotechnology, Department of Physics, University of Agriculture)
Liu, Haiyang (Laboratory of Advance Materials and Nanotechnology, Department of Physics, University of Agriculture)
Rafique, Iqra (Laboratory of Advance Materials and Nanotechnology, Department of Physics, University of Agriculture)
Akbar, Hurria (Laboratory of Advance Materials and Nanotechnology, Department of Physics, University of Agriculture)
Publication Information
Carbon letters / v.28, no., 2018 , pp. 1-8 More about this Journal
Abstract
Graphene is a single atomic layer of carbon atoms, and has exceptional electrical, mechanical, and optical characteristics. It has been broadly utilized in the fields of material science, physics, chemistry, device fabrication, information, and biology. In this review paper, we briefly investigate the ideas, structure, characteristics, and fabrication techniques for graphene applications in lithium ion batteries (LIBs). In LIBs, a constant three-dimensional (3D) conductive system can adequately enhance the transportation of electrons and ions of the electrode material. The use of 3D graphene and graphene-expansion electrode materials can significantly upgrade LIBs characteristics to give higher electric conductivity, greater capacity, and good stability. This review demonstrates several recent advances in graphene-containing LIB electrode materials, and addresses probable trends into the future.
Keywords
graphene; electrode materials; electrochemical characterizations; lithium ion battery;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhao Y, Zhan L, Tian J, Nie S, Ning Z. Enhanced electrocatalytic oxidation of methanol on Pd/polypyrrole-graphene in alkaline medium. Electrochim Acta, 56, 1967 (2011). https://doi.org/10.1016/j.electacta.2010.12.005.   DOI
2 Wintterlin J, Bocquet ML. Graphene on metal surfaces. Surf Sci, 603, 1841 (2009). https://doi.org/10.1016/j.susc.2008.08.037.   DOI
3 Yan Y, Tang H, Wu F, Wang R, Pan M. One-step self-assembly synthesis ${\alpha}-Fe_2O_3$ with carbon-coated nanoparticles for stabilized and enhanced supercapacitors electrode. Energies, 10, 1296 (2017). https://doi.org/10.3390/en10091296.   DOI
4 Gomez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett, 9, 2206 (2009). https://doi.org/10.1021/nl901209z.   DOI
5 Duc KD, Holcman D. Computing the length of the shortest telomere in the nucleus. Phys Rev Lett, 111, 228104 (2013). https:// doi.org/10.1103/physrevlett.111.228104.   DOI
6 Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu T, Nguyen ST, Ruoff RS. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558 (2007). https://doi.org/10.1016/j.carbon.2007.02.034.   DOI
7 Shon IJ, Kim TW, Doh JM, Yoon JK, Park SW, Ko IY. Mechanical synthesis and rapid consolidation of a nanocrystalline $3.3Fe_{0.6}Cr_{0.3}Al_{0.1}-Al_2O_3$ composite by high frequency induction heating. J Alloys Compd, 509, L7 (2011). https://doi.org/10.1016/j.jallcom.2010.09.067   DOI
8 Nitta N, Wu F, Lee JT, Yushin G. Li-ion battery materials: present and future. Mater Today, 18, 252 (2015). https://doi.org/10.1016/j.mattod.2014.10.040.   DOI
9 Prosini PP, Lisi M, Zane D, Pasquali M. Determination of the chemical diffusion coefficient of lithium in $LiFePO_4$. Solid State Ionics, 148, 45 (2002). https://doi.org/10.1016/s0167-2738(02)00134-0.   DOI
10 Guan X., Li G, Li C, Ren R. Synthesis of porous nano/micro structured $LiFePO_4/C$ cathode materials for lithium-ion batteries by spray-drying method. Trans Nonferrous Met Soc China, 27, 141 (2017). https://doi.org/10.1016/s1003-6326(17)60016-5.   DOI
11 Ding Y, Jiang Y, Xu F, Yin J, Ren H, Zhuo Q, Long Z, Zhang P. Preparation of nano-structured $LiFePO_4$/graphene composites by co-precipitation method. Electrochem Commun, 12, 10 (2010). https://doi.org/10.1016/j.elecom.2009.10.023.   DOI
12 Tong J, Fang Y. Enhanced lithium storage capability of $Li_3V_2(PO_4)_3$@C co-modified with graphene and $Ce^{3+}$ doping as high-power cathode for lithium-ion batteries. J Phys Chem Solid, 111, 349 (2017). https://doi.org/10.1016/j.jpcs.2017.08.029.   DOI
13 Wang K, Wang Y, Wang C, Xia Y. Graphene oxide assisted solvothermal synthesis of $LiMnPO_4$ naonplates cathode materials for lithium ion batteries. Electrochim Acta, 146, 8 (2014). https://doi.org/10.1016/j.electacta.2014.09.032.   DOI
14 Bak SM, Nam KW, Lee CW, Kim KH, Jung HC, Yang XQ, Kim KB. Spinel $LiMn_2O_4$/reduced graphene oxide hybrid for high rate lithium ion batteries. J Mater Chem, 21, 17309 (2011). https://doi.org/10.1039/c1jm13741g.   DOI
15 Venkateswara Rao C, Reddy ALM, Ishikawa Y, Ajayan PM. $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$-graphene composite as a promising cathode for Lithium-ion batteries. ACS Appl Mater Interfaces, 3, 2966 (2011). https://doi.org/10.1021/am200421h.   DOI
16 Reddy ALM, Nagarajan S, Chumyim P, Gowda SR, Pradhan P, Jadhav SR, Dubey M, John G, Ajayan PM. Lithium storage mechanisms in purpurin based organic lithium ion battery electrodes. Sci Rep, 2, 960 (2012). https://doi.org/10.1038/srep00960.   DOI
17 Zhu J, Duan R, Zhang S, Jiang N, Zhang Y, Zhu J. The application of graphene in lithium ion battery electrode materials. Springer-Plus, 3, 585 (2014). https://doi.org/10.1186/2193-1801-3-585.   DOI
18 Atabaki MM, Kovacevic R. Graphene composites as anode materials in lithium-ion batteries. Electron Mater Lett, 9, 133 (2013). https://doi.org/10.1007/s13391-012-2134-7.   DOI
19 Zhu J, Wang D, Cao L, Liu T. Ultrafast preparation of three-dimensional porous tin-graphene composites with superior lithium ion storage. J Mater Chem A, 2, 12918 (2014). https://doi.org/10.1039/c4ta02021a.   DOI
20 Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater, 7, 845 (2008). https://doi.org/10.1038/nmat2297.   DOI
21 Jiang Y, Liu R, Xu W, Jiao Z, Wu M, Chu Y, Su L, Cao H, Hou M, Zhao B. A novel graphene modified $LiMnPO_4$ as a performance-improved cathode material for lithium-ion batteries. J Mater Res, 28, 2584 (2013). https://doi.org/10.1557/jmr.2013.235.   DOI
22 Levasseur S, Ménétrier M, Delmas C. On the dual effect of Mg doping in $LiCoO_2$ and $Li1_{+{\delta}}CoO_2$: structural, electronic properties, and $^7Li$ MAS NMR studies. Chem Mater, 14, 3584 (2002). https://doi.org/10.1021/cm021107j.   DOI
23 Li D, Muller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnol, 3, 101 (2008). https://doi.org/10.1038/nnano.2007.451.   DOI
24 Hoang K, Johannes M. Tailoring native defects in $LiFePO_4$: insights from first-principles calculations. Chem Mater, 23, 3003 (2011). https://doi.org/10.1021/cm200725j.   DOI
25 Zhang W, Liu F, Li Q, Shou Q, Cheng J, Zhang L, Nelson BJ, Zhang X. Transition metal oxide and graphene nanocomposites for high-performance electrochemical capacitors. Phys Chem Chem Phys, 14, 16331 (2012). https://doi.org/10.1039/c2cp43673f.   DOI
26 Bai LS, Gao XM, Zhang X, Sun FF, Ma N. Reduced graphene oxide as a recyclable catalyst for dehydrogenation of hydrazo compounds. Tetrahedron Lett, 55, 4545 (2014). https://doi.org/10.1016/j.tetlet.2014.06.097.   DOI
27 Rai AK, Gim J, Anh LT, Kim J. Partially reduced $Co_3O_4$/graphene nanocomposite as an anode material for secondary lithium ion battery. Electrochim Acta, 100, 63 (2013). https://doi.org/10.1016/j.electacta.2013.03.140.   DOI
28 Li X, Zhao X, Wang MS, Zhang KJ, Huang Y, Qu MZ, Yu ZL, Geng D, Zhao W, Zheng J. Improved rate capability of a $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$/CNT/graphene hybrid material for Li-ion batteries. RSC Adv, 7, 24359 (2017). https://doi.org/10.1039/c7ra03438e.   DOI
29 Kim S, Zhang Z, Wang S, Yang L, Cairns EJ, Penner-Hahn JE, Deb A. Electrochemical and structural investigation of the mechanism of irreversibility in $Li_3V_2(PO_4)_3$ cathodes. J Phys Chem C, 120, 7005 (2016). https://doi.org/10.1021/acs.jpcc.6b00408.   DOI
30 Luo J, Liu J, Zeng Z, Ng CF, Ma L, Zhang H, Lin J, Shen Z, Fan HJ. Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett, 13, 6136 (2013). https://doi.org/10.1021/nl403461n.   DOI
31 Xu R, Wang Y, Liu B, Fang D. Mechanics interpretation on the bending stiffness and wrinkled pattern of graphene. J Appl Mech, 80, 040910 (2013). https://doi.org/10.1115/1.4024178.   DOI
32 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896.   DOI
33 Lu X, Yu M, Huang H, Ruoff RS. Tailoring graphite with the goal of achieving single sheets. Nanotechnology, 10, 269 (1999). https://doi.org/10.1088/0957-4484/10/3/308.   DOI
34 Stoller MD, Park S, Zhu Y, An J, Ruoff RS. Graphene-based ultracapacitors. Nano Lett, 8, 3498 (2008). https://doi.org/10.1021/nl802558y.   DOI
35 Katsnelson MI, Novoselov KS, Geim AK. Chiral tunnelling and the Klein paradox in graphene. Nat Phys, 2, 620 (2006). https://doi.org/10.1038/nphys384.   DOI
36 Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 146, 351 (2008). https://doi.org/10.1016/j.ssc.2008.02.024.   DOI
37 Tung VC, Allen MJ, Yang Y, Kaner RB. High-throughput solution processing of large-scale graphene. Nat Nanotechnol, 4, 25 (2009). https://doi.org/10.1038/nnano.2008.329.   DOI
38 Evanoff K, Magasinski A, Yang J, Yushin G. nanosilicon-coated graphene granules as anodes for Li-ion batteries. Adv Energy Mater, 1, 495 (2011). https://doi.org/10.1002/aenm.201100071.   DOI
39 Wei D, Haque S, Andrew P, Kivioja J, Ryhänen T, Pesquera A, Centeno A, Alonso B, Chuvilin A, Zurutuza A. Ultrathin rechargeable all-solid-state batteries based on monolayer graphene. J Mater Chem A, 1, 3177 (2013). https://doi.org/10.1039/c3ta01183f.   DOI
40 Wu ZS, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng HM. Graphene anchored with $Co_3O_4$ nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano, 4, 3187 (2010). https://doi.org/10.1021/nn100740x.   DOI
41 Wang Y, Guo CX, Liu J, Chen T, Yang H, Li CM. $CeO_2$ nanoparticles/graphene nanocomposite-based high performance supercapacitor. Dalton Trans, 40, 6388 (2011). https://doi.org/10.1039/c1dt10397k.   DOI
42 Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim Acta, 55, 3909 (2010). https://doi.org/10.1016/j.electacta.2010.02.025.   DOI
43 Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 414, 359 (2001). https://doi.org/10.1038/35104644.   DOI
44 Pan A, Choi D, Zhang JG, Liang S, Cao G, Nie Z, Arey BW, Liu J. High-rate cathodes based on $Li_3V_2(PO_4)_3$ nanobelts prepared via surfactant-assisted fabrication. J Power Sources, 196, 3646 (2011). https://doi.org/10.1016/j.jpowsour.2010.12.067.   DOI
45 Liu H, Huang J, Li X, Liu J, Zhang Y, Du K. Flower-like $SnO_2$/graphene composite for high-capacity lithium storage. Appl Surf Sci, 258, 4917 (2012). https://doi.org/10.1016/j.apsusc.2012.01.119.   DOI
46 Park S, Ruoff RS. Chemical methods for the production of graphenes. Nature Nanotechnol, 4, 217 (2009). https://doi.org/10.1038/nnano.2009.58.   DOI