• Title/Summary/Keyword: inverse matrices

Search Result 118, Processing Time 0.022 seconds

A High Throughput Multiple Transform Architecture for H.264/AVC Fidelity Range Extensions

  • Ma, Yao;Song, Yang;Ikenaga, Takeshi;Goto, Satoshi
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.4
    • /
    • pp.247-253
    • /
    • 2007
  • In this paper, a high throughput multiple transform architecture for H.264 Fidelity Range Extensions (FRExt) is proposed. New techniques are adopted which (1) regularize the $8{\times}8$ integer forward and inverse DCT transform matrices, (2) divide them into four $4{\times}4$ sub-matrices so that simple fast butterfly algorithm can be used, (3) because of the similarity of the sub-matrices, mixed butterflies are proposed that all the sub-matrices of $8{\times}8$ and matrices of $4{\times}4$ forward DCT (FDCT), inverse DCT (IDCT) and Hadamard transform can be merged together. Based on these techniques, a hardware architecture is realized which can achieve throughput of 1.488Gpixel/s when processing either $4{\times}4\;or\;8{\times}8$ transform. With such high throughput, the design can satisfy the critical requirement of the real-time multi-transform processing of High Definition (HD) applications such as High Definition DVD (HD-DVD) ($1920{\times}1080@60Hz$) in H.264/AVC FRExt. This work has been synthesized using Rohm 0.18um library. The design can work on a frequency of 93MHz and throughput of 1.488Gpixel/s with a cost of 56440 gates.

ALGORITHMS FOR FINDING THE MINIMAL POLYNOMIALS AND INVERSES OF RESULTANT MATRICES

  • Gao, Shu-Ping;Liu, San-Yang
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.251-263
    • /
    • 2004
  • In this paper, algorithms for computing the minimal polynomial and the common minimal polynomial of resultant matrices over any field are presented by means of the approach for the Grobner basis of the ideal in the polynomial ring, respectively, and two algorithms for finding the inverses of such matrices are also presented. Finally, an algorithm for the inverse of partitioned matrix with resultant blocks over any field is given, which can be realized by CoCoA 4.0, an algebraic system over the field of rational numbers or the field of residue classes of modulo prime number. We get examples showing the effectiveness of the algorithms.

On Jacket Matrices Based on Weighted Hadamard Matrices

  • Lee Moon-Ho;Pokhrel Subash Shree;Choe Chang-Hui;Kim Chang-Joo
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.1
    • /
    • pp.17-27
    • /
    • 2007
  • Jacket matrices which are defined to be $n{\times}n$ matrices $A=(a_{jk})$ over a field F with the property $AA^+=nI_n$ where $A^+$ is the transpose matrix of elements inverse of A,i.e., $A^+=(a_{kj}^-)$, was introduced by Lee in 1984 and are used for signal processing and coding theory, which generalized the Hadamard matrices and Center Weighted Hadamard matrices. In this paper, some properties and constructions of Jacket matrices are extensively investigated and small orders of Jacket matrices are characterized, also present the full rate and the 1/2 code rate complex orthogonal space time code with full diversity.

DCT/DFT Hybrid Algorithm using Simple Element Inverse (단순 엘레멘트 인버스를 이용한 DCT/DFT 하이브리드 알고리즘)

  • Lee, Kwang-Jae;Park, Dae-Chul;Lee, Moon-Ho;Sin, Tae-Chol;Chen, Zhu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6C
    • /
    • pp.594-599
    • /
    • 2007
  • In this paper, we present new representation of DCT/DFT matrices via one hybrid architecture. Based on a element inverse matrix factorization algorithm, we show that the DCT and DFT have a same recursive computational pattern, and we can develop an hybrid architecture by using some diagonal matrices.

A RECURSIVE ALGORITHM TO INVERT MULTIBLOCK CIRCULANT MATRICES

  • Baker, J.;Hiergeist, F.;Trapp, G.
    • Kyungpook Mathematical Journal
    • /
    • v.28 no.1
    • /
    • pp.45-50
    • /
    • 1988
  • Circulant and multiblock circulant matrices have many important applications, and therefore their inverses are of considerable interest. A simple recursive algorithm is presented to compute the inverse of a multiblock circulant matrix. The algorithm only uses complex variables, roots of unity and normal matrix/vector operations.

  • PDF

A SPARSE APPROXIMATE INVERSE PRECONDITIONER FOR NONSYMMETRIC POSITIVE DEFINITE MATRICES

  • Salkuyeh, Davod Khojasteh
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1131-1141
    • /
    • 2010
  • We develop an algorithm for computing a sparse approximate inverse for a nonsymmetric positive definite matrix based upon the FFAPINV algorithm. The sparse approximate inverse is computed in the factored form and used to work with some Krylov subspace methods. The preconditioner is breakdown free and, when used in conjunction with Krylov-subspace-based iterative solvers such as the GMRES algorithm, results in reliable solvers. Some numerical experiments are given to show the efficiency of the preconditioner.

Inverse Eigenvalue Problems with Partial Eigen Data for Acyclic Matrices whose Graph is a Broom

  • Sharma, Debashish;Sen, Mausumi
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.2
    • /
    • pp.211-222
    • /
    • 2017
  • In this paper, we consider three inverse eigenvalue problems for a special type of acyclic matrices. The acyclic matrices considered in this paper are described by a graph called a broom on n + m vertices, which is obtained by joining m pendant edges to one of the terminal vertices of a path on n vertices. The problems require the reconstruction of such a matrix from given partial eigen data. The eigen data for the first problem consists of the largest eigenvalue of each of the leading principal submatrices of the required matrix, while for the second problem it consists of an eigenvalue of each of its trailing principal submatrices. The third problem has an eigenvalue and a corresponding eigenvector of the required matrix as the eigen data. The method of solution involves the use of recurrence relations among the leading/trailing principal minors of ${\lambda}I-A$, where A is the required matrix. We derive the necessary and sufficient conditions for the solutions of these problems. The constructive nature of the proofs also provides the algorithms for computing the required entries of the matrix. We also provide some numerical examples to show the applicability of our results.

ON THE g-CIRCULANT MATRICES

  • Bahsi, Mustafa;Solak, Suleyman
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.695-704
    • /
    • 2018
  • In this paper, firstly we compute the spectral norm of g-circulant matrices $C_{n,g}=g-Circ(c_0,c_1,{\cdots},c{_{n-1}})$, where $c_i{\geq}0$ or $c_i{\leq}0$ (equivalently $c_i{\cdot}c_j{\geq}0$). After, we compute the spectral norms, determinants and inverses of the g-circulant matrices with the Fibonacci and Lucas numbers.

THE NEW ALGORITHM FOR $LDL^T$ DECOMPOSITION OF BLOCK HANKEL MATRICES

  • Bao, Wendi;Lv, Zhongquan
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.641-651
    • /
    • 2011
  • In this paper, with use of the displacement matrix, two special matrices are constructed. By these special matrices the block decompositions of the block symmetric Hankel matrix and the inverse of the Hankel matrix are derived. Hence, the algorithms according to these decompositions are given. Furthermore, the numerical tests show that the algorithms are feasible.