Browse > Article

A SPARSE APPROXIMATE INVERSE PRECONDITIONER FOR NONSYMMETRIC POSITIVE DEFINITE MATRICES  

Salkuyeh, Davod Khojasteh (Department of Mathematics, University of Mohaghegh Ardabili)
Publication Information
Journal of applied mathematics & informatics / v.28, no.5_6, 2010 , pp. 1131-1141 More about this Journal
Abstract
We develop an algorithm for computing a sparse approximate inverse for a nonsymmetric positive definite matrix based upon the FFAPINV algorithm. The sparse approximate inverse is computed in the factored form and used to work with some Krylov subspace methods. The preconditioner is breakdown free and, when used in conjunction with Krylov-subspace-based iterative solvers such as the GMRES algorithm, results in reliable solvers. Some numerical experiments are given to show the efficiency of the preconditioner.
Keywords
linear system; nonsymmetric; positive definite; sparse approximate inverse; preconditioning; FFAPINV; GMRES;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Benzi, M. Tuma, A sparse approximate inverse preconditioner for nonsymmetric linear systems, SIAM J. Sci. Comput., 19 (1998) 968-994.   DOI   ScienceOn
2 M. Benzi, M. Tuma, A comparative study of sparse approximate inverse preconditioners, Appl. Numer. Math., 30 (1999)305-340.   DOI   ScienceOn
3 M. Benzi, C. D. Meyer, and M. Tuma, A sparse approximate inverse preconditioner for the conjugate gradient method, SIAM J. Sci. Comput., 17 (1996) 1135-1149.   DOI   ScienceOn
4 T. Davis, University of Florida sparse matrix collection, NA Digest, 92(1994), http://www.cise.ufl.edu/research/sparse/matrices.
5 M. Benzi, Preconditioning techniques for large linear systems: A survey, J. of Computational Physics, 182 (2002) 418-477.   DOI   ScienceOn
6 M. Benzi, J. K. Cullum, and M. Tuma, and C. D. Meyer, Robust approximate inverse preconditioning for the conjugate gradient Method, SIAM J. Sci. Comput., 22 (2000) 1318-1332.   DOI   ScienceOn
7 J.-G. Luo, An incomplete inverse as a preconditioner for the conjugate gradient method, Comput. Math. Appl., 25 (1993) 7379.
8 H. A. van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 12 (1992) 631-644.
9 J. Zhang, A procedure for computing factored approximate inverse, M.Sc. dissertation, Department of Computer Science, University of Kentucky, 1999.
10 J. Zhang, A sparse approximate inverse technique for parallel preconditioning of general sparse matrices, Appl. Math. Comput., 130 (2002) 63-85.   DOI   ScienceOn
11 J.-G. Luo, A new class of decomposition for inverting asymmetric and indefinite matrices, Comput. Math. Appl., 25 (1993) 95104.
12 Y. Saad, Iterative Methods for Sparse linear Systems, PWS press, New York, 1995.
13 J.-G. Luo, A new class of decomposition for symmetric systems, Mechanics Research Communications, 19 (1992) 159166.
14 Matrix Market page, http://math.nist.gov/MatrixMarket.
15 A. Rafiei and F. Toutounian, New breakdown-free variant of AINV method for nonsymmetric positive definite matrices, Jornal of Computational and Applied Mathematics, 219 (2008) 72-80.   DOI   ScienceOn
16 Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986) 856-869.   DOI
17 S. A. Kharchenko, L. Yu. Kolotilina, A. A. Nikishin, A. Yu. Yeremin, A robust AINV-type method for constructing sparse approximate inverse preconditioners in factored form, Numer. Linear Algebra With Appl., 8 (2001) 165179.
18 E.-J. Lee and J. Zhang, Fatored approximate inverse preonditioners with dynamic sparsity patterns, Tehnial Report No.488-07,Department of Computer Science,University of Kentuky, Lexington, KY, 2007.
19 L. Y. Kolotilina and A. Y. Yeremin, Factorized sparse approximate inverse preconditioning I. Theory, SIAM J. Matrix Anal. Appl., 14 (1993) 45-58.   DOI
20 L. Y. Kolotilina and A. Y. Yeremin, Factorized sparse approximate inverse preconditioning II: Solution of 3D FE systems on massively parallel computers, Int. J. High Speed Comput.,7 (1995) 191-215.   DOI   ScienceOn