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A RECURSIVE ALGORITHM TO INVERT MULTIBLOCK
CIRCULANT MATRICES

By J. Baker, F. Hiergeist and G. Trapp

Abstract: Circulant and multiblock circulant matrices have many important
applications, and therefore their inverses are of considerable interest. A simple
recursive algorithm is presented to compute the inverse of a multiblock circulant
matrix. The algorithm only uses complex variables, roots of unity and normal
matrix/vector operations.

1. Introduection

Circulant matrices have applications in physics, Fourier analysis, geometry,
probability, statistics and other areas of mathematics. Davis [2] devotes an
entire chapter to the analysis and determination of circulant inverses and sets
of equations. John [3] describes the application of block and multiblock circu-
lants to cyclic designs in Factorial experiments. The book by John and Queno-
ville [4] contains background material on experimental design.

A matrix is a circulant if the 7~th row may be obtained from the (i-1)th row
by a right circular shift of one element. For example the following matrix is
a 33 circulant:

g 8 &
c a b
b ¢ a

A block circulant matrix is a partitioned matrix with blocks patterned in the
circulant fashion, and where each of the blocks itself is a circulant. For
example the following matrix is a block circulant, it is comprised of 2x2
circulant blocks.

a b ¢ d
b a d c
c d a b
d ¢ b @

Notice that a block circulant matrix need not be a circulant matrix.
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An M-block circulant matrix is a partitioned matrix with blocks patterned
in the circulant fashion, and where each of the blocks is an (M-1)-block circu-
lant. A 0-block circulant is a circulant, and a 1l-block circulant is a block
circulant.

Because of the special structure of a circulant, the matrix is completely
specified by its first row. Similarly the first row of an M-block circulant plus
the sizes of the partitions of the subblocks completely determine the M-block
circulant. The first row of a circulant or multiblock circulant may be represen-
ted by a vector. In the remainder of this paper, we will regularly use the
vector representation in place of the matrix representation,

Given a circulant, block circulant or multiblock circulant matrix A4, there
are two problems of interest: 1) determine A™' when it exists, and 2) solve
the set of linear equations Ax=54. Because of the special structure of multiblock
circulants, these two problems are essentially equivelent. Davis [2] has shown
that if an M-block circulant is invertible, then its inverse is also an M-block
circulant with the same structure. Therefore the problems mentioned above
may be summarized as follows: given a vector representing the first row of an
M-block circulant A, and the sizes of the various subblocks, compute, if
possible, a new vector which is the first row of the M-block circulant inverse
of A. We will present an algorithm which determines the first row of the
inverse of an M-block circulant is less time than the Gaussian elimination
method used for solving the corresponding system of equations.

We will show that the number of multiplications to determine the first row
of the inverse matrix is proportioned to the size of the matrix squared; this is
a vast improvement over the classical methods.

2. Solution procedure

We will first review the procedure for inverting a circulant matarix. If e,
a, -, a, are the elements of the first row of a circulant, then define @, a,
-, a, as follows:

o, ~2(r o7 e, )

where -rkzcos(zn'(kﬂl)/N)-Hsm(2r:(k 1)/N). Herc { denotes the imaginary
square root of minus one. The 7,’s are the Nth roots of unity.

The circulant has an inverse if and only if a,#0 for k=1, 2, ---, N. In this
case let Bk=l/ak and define by, by v, by 88 follows:
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_1 X G-

where Ty is the complex conjugate of i Then bI, b, =, b, is the first row

of the inverse circulant.

N

Next we consider the multiblock circulant case. Suppose we have a routine
that will invert an (M-1)-block circulant. Then given @, g, -, a,. vectors
representing the first row of an M-block circulant, we perform the following
steps. First, since each vector a; is the first row of an (M —1)-circulant, the
vectors given as follows a;, a,, -, ay

N r
- (1-1)
=) g,

€))
are also the first row of (M-1)-block circulants.

This is true because a linear combination of multiblock circulants is a multi-
block circulant, and equation (3) is a linear combination of the «.’s. Second
we invoke our subroutine to invert an (M-1)-block circulant. We will call our
subroutine N times, for each a, k=1, 2, -, N. Let the resultant vectors,
which represent the first rows of the corresponding inverses be 8,, B, . Bj.
Third, the vectors bio By s By which are the first row of the inverse of the
original M-block circulant are computed as follows:

I O
=N 8, )

Notice that the procedure used to invert a circulant (equations 1 and 2 and
scalar inversions) is essentially the same as that for inverting an M-block
circulant (equations 3 and 4 and call to an inversion routine). The form of the
equations is the same, the difference is that for circulatns we have scalars,
while for M-block circulants we have vectors. Recursion allows us to combine
the cases and develop a simple algorithm for the finding the inverse of an
M-block circulant.

We will now describe a routine that accepts N vectors a, a, ',
a, where each vector is of length P. Our routine will produce a new sequence
of vectors b,, b, -, By each of these vectors is also a length P. The procedure
to determine the 4,'s is a combination of the methods discussed previously. The
case P=1, where each @, is a scalar, is permitted and is in fact necessary.

Given an M-block circulant, we define an array S, were S(i) is the number
of sub-blocks of the i-th block circulant. For example if we have 3-block
circulant then we would assign to S(3) the number of 2-block circulants. To
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S(2) we would assign the number of 1-block circulants. S(1) would contain the
number of 0-block circulants (remember these are ordinary circulants). And
finally S(0) would contain the length (or size) of the 0-block circulants,
For an M-block circulant, the total length T of the first row is given by:
T=SO s *samn.
The N and P that we used previously for the ‘number of a vectors and the
length of the a vectors may be computed using the following two equations:
N=SWM)
P=T/N
Given a main routine which assigns values to the A vector (this is the first
row of the M-block circulant being inverted), the S vector and M variable,
then a typical call to the subroutine would be of the form:
CALL BLKCIRC(S, M, A, B, FLAG)
After returning from the subroutine, the B vector would contain the first row
of the inverse matrix whenever the inverse exists which is specified by
FLAG=0.
The structure of the BLKCIRC routine is as follows:
BLKCIRC: (S, M, A, B, FLAG)
FLAG=0
N=SWM)
If M=0 then P=1 ELSE P=S(0)"s(1)*-*s-1)
FILL THE N ALPHA VECTORS USING EQUATION 3 (or D
THESE VECTORS ARE OF LENGTH P.
IF P=1 THEN DO
FOR I=1 TO S0
IF ALPHA =0 THEN DO
FLAG=1
PETURN
ELSE
BETA=1/ALPHA
END IF
END FOR
ELSE (When P>1)
For I=1 TON
CALL BLKCIRC(S, M-1, ALPHA, BETA, FLAG)
IF FLAG=1 THEN RETURN
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END FOR
END IF
NOW FILL THE B VECTORS USING EQUATION 4 (or 2)
RETURN

END: BLKCIRC

3. Analysis of the solution procedure

To examine the efficiency of the algorithm decribed above to determine the
inverse of an M-block circulant, we will use the notation of the previous
section and only count multiplications. We ignore the divisions because they are
of linear order of the size of the matrix, and as we shall see multiplications
are of quadratic order.

Given an M-block circulant matrix where S, is the number of sub-blocks in

the i-th block circulant and T is the size of the matrix. Then T=S,°S,’S,"

=+
Sy

Let F(&) equal the number of multiplications that are performed in the call
to BLKCIRC that processes the #&-th block circulant, i.e. BLKCIRC(S, K. A.
B. FLAG).

There are three steps in this call to BLKCIRC

1) determine S, vectors of size S[;"LSI-}F---SJQ,_1 (the vectors a,)

2) call BLKCIRC (S, K-1, A, B, FLAG) S, times

3) determine Sk vectors of size St]aésl"’("---{hSk#1 (the vectors I_Jj).

For =0, the case of a circulant matrix, step one is carried out by equation
(1) and step three is carried out by equation (2) Step two corresponds to 8,=
1e,,

We assume the powers of the roots of unity are availabe in an array and
hence no multiplications are required to obtain these, we simply use a table
look up.

For each % in equation (1), 1<<k<{m, n multiplications are required. Similarly,
for each j, 1<<j<{», in equation (2), » multiplications are required. Hence
F()=2n" or F(0)=2S,

For M=>1 steps two and three are carried out by equations (3) and (4
respectively.

For step one each a; in equation (3) is a vector of size SO%SI*:..."”SMﬁl and

N=8,,. Hence for each #, 1<#<M there are (SO%Sl%---:*‘SM_l)*S;_! multipli-
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cations.
Similarly, step three requires thc same numbers of operations. Hence.
F(M)=28, S S (TS FM-1)
and by induction
F(M)=258," "8, (Sy+5,++8,).
It is reasonable to assume that S.>1 for each 7 and then it can eaily be
shown that

\rf 1

FOD <265, 8,778,

or FM) <o’
where T is the size of the multiblock circulant.

With T~ additional multiplication, we can compute A_Iy and hence solve the
system A _=y.

We have ignored the overhead of the recursive calls to BLKCIRC,

We note further that the numerical problem of what is zero, and any concern
with the condition number of the matrix have not been addressed. These
problems should be a fruitful area for further study.
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