• 제목/요약/키워드: inverse Gaussian distribution

검색결과 51건 처리시간 0.018초

Shrinkage Estimator of Dispersion of an Inverse Gaussian Distribution

  • Lee, In-Suk;Park, Young-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권3호
    • /
    • pp.805-809
    • /
    • 2006
  • In this paper a shrinkage estimator for the measure of dispersion of the inverse Gaussian distribution with known mean is proposed. Also we compare the relative bias and relative efficiency of the proposed estimator with respect to minimum variance unbiased estimator.

  • PDF

역가우스분포에 대한 쿨백-라이블러 정보 기반 적합도 검정 (Kullback-Leibler Information-Based Tests of Fit for Inverse Gaussian Distribution)

  • 최병진
    • 응용통계연구
    • /
    • 제24권6호
    • /
    • pp.1271-1284
    • /
    • 2011
  • 본 논문에서는 위치와 척도모수가 모두 알려지지 않은 역가우스분포에 대한 적합도 검정으로 기존에 개발된 엔트로피 기반 검정을 확장한 쿨백-라이블러 정보 기반 적합도 검정을 소개한다. 역가우스분포에 대한 단순 또는 복합 영가설을 검정하기 위한 4가지 형태의 검정통계량을 제시하고 검정통계량의 계산에 사용할 표본크기에 따른 윈도크기와 기각값을 모의실험을 통해 결정하여 표의 형태로 제공한다. 검정력 분석을 위해 수행한 모의실험의 결과에서 위치와 척도모수가 모두 알려진 역가우스분포에 대한 쿨백-라이블러 정보 기반 적합도 검정은 모든 대립분포와 표본크기에서 EDF 검정들보다 좋은 검정력을 가지는 것으로 나타난다. 위치모수 또는 척도모수만 알려진 역가우스분포에 대한 쿨백-라이블러 정보 기반 적합도 검정은 모든 대립분포에 대해서 표본크기가 커짐에 따라 검정력이 증가하는 경향을 보인다. 위치와 척도모수가 모두 알려지지 않은 역가우스분포에 대한 쿨백-라이블러 정보 기반 적합도 검정은 대체적으로 엔트로피 기반 검정과 비슷한 수준의 검정력을 보이는 것으로 나타나고 이 결과를 통해서 두 검정은 동일함을 확인할 수 있다.

확률적분변환에 기초한 역가우스분포에 대한 적합도 검정 (A Test of Fit for Inverse Gaussian Distribution Based on the Probability Integration Transformation)

  • 최병진
    • 응용통계연구
    • /
    • 제26권4호
    • /
    • pp.611-622
    • /
    • 2013
  • Mudholkar와 Tian (2002)이 제시한 엔트로피 기반 검정은 위치모수와 척도모수가 모두 알려져 있지 않거나 척도 모수만 알려져 있는 역가우스분포의 적합을 알아보고자 하는 경우에만 사용이 가능하다. 본 논문에서는 위치모수와 척도모수가 모두 알려져 있거나 위치모수만 알려져 있는 역가우스분포의 적합에도 적용할 수 있는 엔트로피 기반 적합도 검정을 소개한다. 이 검정은 확률적분변환에 기초를 두고 있다. 모의실험을 통해서 추정한 표본크기와 윈도크기에 따른 검정통계량의 기각값과 근사기각값을 얻기 위한 계산공식을 제시한다. 제안한 검정과 Mudholkar와 Tian (2002)의 검정을 검정력 측면에서의 성능을 비교하고자 모의실험을 수행한다. 모의실험 결과에서 제안한 검정은 기존의 엔트로피 기반 검정보다 더 좋은 검정력을 가지는 것으로 나타난다.

역가우스분포에 대한 변형된 엔트로피 기반 적합도 검정 (A Modi ed Entropy-Based Goodness-of-Fit Tes for Inverse Gaussian Distribution)

  • 최병진
    • 응용통계연구
    • /
    • 제24권2호
    • /
    • pp.383-391
    • /
    • 2011
  • 이 논문에서는 역가우스분포의 적합을 위한 변형된 엔트로피 기반 검정을 제시한다. 이 검정은 자료생성분포와 역가우스분포의 엔트로피 차이에 기초를 두고 있으며 검정통계량은 엔트로피 차이의 추정량을 사용한다. 엔트로피 차이의 추정량은 자료생성분포에 대한 엔트로피 추정량으로 Vasicek의 표본엔트로피와 역가우스분포에 대한 엔트로피 추정량로 균일최소분산불편추정량을 사용하여 얻는다. 모의실험을 통해 얻은 표본크기와 윈도크기에 따른 검정통계량의 기각값들을 표의 형태로 제공한다. 제안한 검정의 검정력 알아보기 위해 여러 대립분포와 표본크기에 대해서 모의실험을 수행하고 기존의 엔트로피 기반 검정과 비교한다.

Comparison of parameter estimation methods for normal inverse Gaussian distribution

  • Yoon, Jeongyoen;Kim, Jiyeon;Song, Seongjoo
    • Communications for Statistical Applications and Methods
    • /
    • 제27권1호
    • /
    • pp.97-108
    • /
    • 2020
  • This paper compares several methods for estimating parameters of normal inverse Gaussian distribution. Ordinary maximum likelihood estimation and the method of moment estimation often do not work properly due to restrictions on parameters. We examine the performance of adjusted estimation methods along with the ordinary maximum likelihood estimation and the method of moment estimation by simulation and real data application. We also see the effect of the initial value in estimation methods. The simulation results show that the ordinary maximum likelihood estimator is significantly affected by the initial value; in addition, the adjusted estimators have smaller root mean square error than ordinary estimators as well as less impact on the initial value. With real datasets, we obtain similar results to what we see in simulation studies. Based on the results of simulation and real data application, we suggest using adjusted maximum likelihood estimates with adjusted method of moment estimates as initial values to estimate the parameters of normal inverse Gaussian distribution.

역가우스분포에 대한 적합도 평가를 위한 그래프 방법 (A Graphical Method to Assess Goodness-of-Fit for Inverse Gaussian Distribution)

  • 최병진
    • 응용통계연구
    • /
    • 제26권1호
    • /
    • pp.37-47
    • /
    • 2013
  • Q-Q 플롯은 자료에 대한 분포적 가정을 평가하기 위해서 사용되는 편리하고 효과적인 그래프 방법이다. Q-Q 플롯은 자료의 분포와 이론적 분포를 비교하기 위한 확률플롯으로 자료에서의 분위수와 이에 대응하는 이론적 분위수를 각각 수직축과 수평축으로 해서 그린 산점도의 형태를 취한다. 본 논문에서는 확률변수 X가 위치모수 ${\mu}$와 척도수 ${\lambda}$를 가지는 역가우스분포를 따르면, 변환된 확률변수 $Y={\mid}\sqrt{\lambda}(X-{\mu})/{\mu}\sqrt{X}{\mid}$는 평균이 0이고 분산이 1인 표준반접정규분포를 하게 되는 분포적 결과를 활용하여 역가우스분포 Q-Q 플롯의 구축방법을 소개한다. 역가우스분포와 다른 분포를 따르는 자료를 대상으로 그린 Q-Q 플롯에서 나타나는 점들의 형태를 알아보고자 모의실험을 수행하고 그 결과를 제시한다. 실제 자료에 대한 사례분석을 통해 제안한 Q-Q 플롯의 유용성을 보인다.

Minimum Variance Unbiased Estimation for the Maximum Entropy of the Transformed Inverse Gaussian Random Variable by Y=X-1/2

  • Choi, Byung-Jin
    • Communications for Statistical Applications and Methods
    • /
    • 제13권3호
    • /
    • pp.657-667
    • /
    • 2006
  • The concept of entropy, introduced in communication theory by Shannon (1948) as a measure of uncertainty, is of prime interest in information-theoretic statistics. This paper considers the minimum variance unbiased estimation for the maximum entropy of the transformed inverse Gaussian random variable by $Y=X^{-1/2}$. The properties of the derived UMVU estimator is investigated.

Normal inverse Gaussian 분포에서 모수추정의 보정 방법 연구 (A numerical study of adjusted parameter estimation in normal inverse Gaussian distribution)

  • 윤정연;송성주
    • 응용통계연구
    • /
    • 제29권4호
    • /
    • pp.741-752
    • /
    • 2016
  • 금융자산의 수익률 분포를 잘 설명할 수 있는 것으로 알려진 normal inverse Gaussian(NIG)분포는 모수의 조건에 의해 세 배의 초과첨도가 왜도 제곱의 5배보다 커야 하는데, 만약 관측된 초과첨도와 왜도의 관계가 이를 만족하지 못하거나 두 값이 매우 비슷하다면 모수를 안정적으로 추정하기 어렵게 된다. 이 논문에서 우리는 NIG분포의 모수추정에서 발생하는 이러한 문제점을 살펴보고 모의실험을 통해 이를 보정하는 방법을 찾아보았다. KOSPI, S&P500, FTSE와 HANG SENG의 실제 주가지수 자료에 적용하여 보정의 효과를 비교하고 VaR를 이용한 사후검증으로 보정된 추정방법의 성능을 평가해 보았다. 보정 방법을 이용하였을 때, 모수추정의 문제가 있던 구간을 포함한 모든 구간에서 안정적인 모수추정이 가능하였고 VaR를 통한 사후 검증에서도 분포의 성능이 떨어지지 않음을 확인하였다.

INVERSE GAUSSIAN분포의 모수비에 대한 무정보적 사전분포에 대한 연구 (Noninformative Priors for the Ratio of Parameters in Inverse Gaussian Distribution)

  • 강상길;김달호;이우동
    • 응용통계연구
    • /
    • 제17권1호
    • /
    • pp.49-60
    • /
    • 2004
  • 이 논문의 목적은 역 가우스 분포의 모수비가 관심의 대상일 때, 그 모수비에 대한 무정보적 사전분포를 구하는데 있다. 특별히, 모수비에 대한 확률대응사전분포와 기준 사전분포를 제안하였다. 먼저, 관심의 대상이 되는 모수에 대해 모수 직교화 변환을 구하고, 모수 직교화 변환을 이용하여 확률대응사전분포와 기준사전분포를 구하였다. 특히 확률대응사전분포의 일치차수는 1차임을 보였으며 2차 확률대응사전분포는 존재하지 않음을 보였다. 또한 제안된 사전분포에 의해 유도된 사후분포는 적절 분포임을 증명하였다. 모의 실험을 통하여 확률대응사전분포와 기준사전분포를 비교했으며, 실제자료를 이용하여 분석하는 예를 보였다.