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Abstract

In this paper, we develop optimal decision interval exponentially weighted
moving average(EWMA) scheme for the process mean and the reciprocal mea-

sure of dispersion of the inverse Gaussian distribution.
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1. Introduction

EWMA control charts are very effective at detecting persisting special cause.
The most common EWMA charts assume that the process measurement being moni-
tored follows the normal distribution. Many industrial problems yield measures with
skewed, positive distributions — examples are component reliabilities, times to com-
pletion of tasks and insurance claims. Non-normal measures such as these should not
be monitored using procedures based on the normal distribution. The inverse Gaus-
sian distribution provides a flexible distribution that can be used to model positive

skew quantities, and therefore provides an effective framework for statistical process
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control on processes producing such measures. Positive skewed processes can often
be well modelled by the inverse Gaussian distribution. Edgeman(1989) proposed a
Shewhart control charting scheme for the inverse Gaussian distribution. Nabar and
Bilgi(1994) developed a methodology for cumulative sum(CUSUM) charts for the
mean of an inverse Gaussian distribution by using a mask. They approximated the
average run lengths(ARLs) by using a method due to Edgeman and Salzberg(1991).
Hawkins and Olwell(1997) derived the optimal CUSUM scheme for detecting step
changes in the location or the shape parameter of the inverse Gaussian distribution.
This paper defines the optimal EWMA control chart schemes of the inverse Gaussian
distribution and evaluates its performance in detecting step changes in each of these
parameters. For the simulation, an algorithm by Micheal, Schucany & Hass (1976)

was used to generate the inverse Gaussian distributed pseudorandom variates.

2. Inverse Gaussian EWMA control limit

2.1 Inverse Gaussian distribution
Suppose that the process characteristic, X, that is being monitored is distributed

according to the inverse Gaussian density

A 1/2 —/\(CB—#)2
f(m)_(m) exp(—m— , >0, >0, A>0, (1)

where the parameter 4 is the process mean and is unknown and the parameter A is a
reciprocal measure of dispersion (Johnson & Kotz, 1970) as well as being the shape
parameter of the density and may be either known or unknown. In this paper the
notation X ~ IG(u, A) will refer to a process characteristic, X, distributed according
to (1).

For a random sample X ~ IG(u,A), n > 2,

X:%f:x,- @)

(x-%) ®

and
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are the maximum likelihood estimates of p and %; X ~ IG(g,nA), nAV ~ x2_,,
the chi-square distribution with (n — 1)df, and two are stochastically independent
(Tweedie, 1957).

Assume that m samples of n items each have been selected from the process
when it is in control and that process output is distributed according to the inverse
Gaussian probability density function (1). Let X'j be the 7 th sample means and
let V; be the value of (3) for the j th sample. Further, let X and V be defined,
respectively, by

X=[X1+Xo+ - +Xn)/m
and

V=[Vit Vot -+ Vn]/m.

Then X is a minimum variance unbiased estimator of the process mean, u, and V

is a linear unbiased estimator of } .

2.2 Inverse Gaussian EWMA control limit
The EWMA control chart was introduced by Roberts(1959). The exponentialy

weighted moving average for the process mean is defined as
Zt = TXt + (1 - ’I")Zt__l, (4)

where 0 < 7 < 1 is a constant and the starting value (required with the first sample
att=1)is Zp = X.
To demonstrate that the EWMA Z; is a weighted average of all previous sample

means, we may substitute for Z;_; on the right-hand side of (4) to obtain

Z: = 'I'Xt + (1 - r)[r)_(t_l + (1 - T)Zt_z] (5)
= rX;+r(1—r) X1 +(1-7)%2,_, .
Continuing to substitute recursively for Z,_;, (j = 2,3,---,t), we obtain
t—1
Zy=ry (1-rYXj+(1-1)2 . (8)
3=0

If the X ; are independent random variables with variance ;‘{;, then the variance
of Zt is

T (L ] )
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As t increases, a%l increases to a limiting value

4-2()

Consequently, the upper and lower control limits are

UCL=5_(+3\/;§<2iT)[I—(l—r)2t] 9

LCLzmax{O, 5‘(—3\/7%;(2f_r>[1—(1—r)2t] } (10)

2.3 EWMA control limit for reciprocal measure of dispersion
Similarly, the exponentially weighted moving average for reciprocal measure of

dispersion is performed as following that
Wy=rVi+ (1 —r)Wi, (11)

where 0 < 7 < 1 is a constant and the starting value ( required with the first sample

att=1)isWy=V.
We may substitute for W;_; on the right-hand side of (11) to obtain

t—-1
We=rY (1-ryVij+ (1 —r)'Wo. (12)
=0

Since nAV ~ X121—1’ variance of V is 2((—1’:;—)? Then the variance of W; is

o = 2 (55 - a - (13)

As t increases, 012,[/“ increases to a limiting value

4 -220(n)

Consequently, the upper and lower control limits for reciprocal measure of dis-

persion are

UCL =V + 3\/2((’;/\_);) (2 — r)p —(1-r) (15)
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LCL = max{O, V- 3\/ 2((’;,\_)21) ( 5 ~ r) [1-(1-r)2 } (16)

3. Simulation study and Conclusion

If the X, is inverse Gaussian with parameters y and A and we define the rescaling

2X,
then Y, follows distribution IG(¢, $2) where
A
s=2 18
r (18)

This is a single-parameter distribution, reducing the tabulation problem to one
of double rather than triple entries, and making the production of useful ARL tables
a reasonable objective. The extent to which an inverse Gaussian density differs from
a normal density essentially depends on its shape. The inverse Gaussian density is
unimodal and its shape depends only on the value of ¢ (see Figure 1 of Johnson &
and Kotz(1970)). As ¢ tends to infinity, with u fixed, the inverse Gaussian density
tends to a unit normal distribution (Johnson & Kotz, 1970).

To investigate the advantage of EWMA control chart in using inverse Gaussian
distribution rather than normal distribution when, in fact, the measured process
characteristic X ~ IG(u, A), 5000 samples each of size n = 4, 6,8 and 10 were gener-
ated from inverse Gaussian density (1) with ¢ = 0.25,0.50, 1,2, 4, 8, 16, 32, 100, 1000
and 5000. Results of the simulation are recorded in Table 1. Examination of Table
1 reveals that, for small values of ¢, the EWMA control chart gives progressively
better (yet still poor) results as the sample size, n, increase. But, for large values of
¢, ARLs are not under influence of the sample size.

Table 2 presented here can be used in a similar way to construct EWMA charts
with specified ARLs at ¢ = ¢ and at ¢ = ¢; , some deviation from target. It shows
that the EWMA control chart is very effective against small process shifts for the
small 7.
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Table 1. ARL values for EWMA control chart
T
5 0.2 0.5
n n
4 6 8 10 4 6 8 10
0.25 | 146.148 167417 179.935 194.661 68.982 69.541 76.448  83.380
0.5 182.309 213.260 233.589 250.912 73.011 84.963 93.613 106.946
1 228.983 274.116 297.343 319.036 98.253 119.964 132.200 150.156
2 297.084 325.257 362.076 368.551 [ 133.298 153.181 175.393 200.978
4 355.480 389.166 400.788 411.832 {| 174.427 212.996 233.343 251.959
8 309.247 419.672 434.571 435.117 || 228.696 261.196 275.373 265.227
16 432.718 443.057 438.571 447.376 || 281.200 291.980 312.944 318.556
32 444.912 445.447 454471 454.039 || 339.086 323.250 346.776 331.070
100 | 457.460 464.625 459.983 464.008 || 346.154 356.275 350.182 353.365
1000 | 528.151 536.472 534.302 548.574 | 359.768 361.691 362.089 356.327
50000 | 543.402 536.338 537.679 541.341 || 363.469 362.475 372.350 362.976
Table 2. ARL values of Schemes ( optimal in detecting ¢o = 1.0, n =10 )

® T
1 0.8 0.5 0.2 0.1
1.0 96.210 106.814 144.775 319.982 484.207
1.1 52.034 55.320 50.181 56.094 33.104
1.2 30.094 25.348 22.686 9.049 -
1.3 18.715  14.125 9.665 0.070 -
14 10.456 8.259 5.092 - -
1.5 7.383  4.969 1.908 - -
1.6 4.434 3.143 0.249 - -
1.7 2.822 1.930 0.249 - -
1.8 2.048 1.234 0.050 - -
1.9 1.374 0.705 0.015 - -
2.0 1.074 0.406 - - -
2.5 0.148 0.012 - - -
3.0 0.010 - - - -

The dash denotes an ARL that is less than 0.001.
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