• Title/Summary/Keyword: inundation model

Search Result 384, Processing Time 0.028 seconds

Prediction of Loss of Life in Downstream due to Dam Break Flood (댐 붕괴 홍수로 인한 하류부 인명피해 예측)

  • Lee, Jae Young;Lee, Jong Seok;Kim, Ki Young
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.10
    • /
    • pp.879-889
    • /
    • 2014
  • In this study, to estimate loss of life considered flood characteristics using the relationship derived from analysis of historical dam break cases and the factors determining loss of life, the loss of life module applying in LIFESim and loss of life estimation by means of a mortality function were suggested and applicability for domestic dam watershed was examined. The flood characteristics, such as water depth, flow velocity and arrival time were simulated by FLDWAV model and flood risk area were predicted by using inundation depth. Based on this, the effects of warning, evacuation and shelter were considered to estimate the number of people exposed to the flood. In order to estimate fatality rates based on the exposed population, flood hazard zone is assigned to three different zones. Then, total fatality numbers were predicted after determining lethality or mortality function for each zone. In the future, the prediction of loss of life due to dam break floods will quantitatively evaluate flood risk and employ to establish flood mitigation measures at downstream applying probabilistic flood scenarios.

Late Quaternary Sequence Stratigraphy in Kyeonggi Bay, Mid-eastern Yellow Sea (황해 중동부 경기만의 후기 제4기 순차층서 연구)

  • Kwon, Yi-Kyun
    • Journal of the Korean earth science society
    • /
    • v.33 no.3
    • /
    • pp.242-258
    • /
    • 2012
  • The Yellow Sea has sensitively responded to high-amplitude sea-level fluctuations during the late Quaternary. The repeated inundation and exposure have produced distinct transgression-regression successions with extensive exposure surfaces in Kyeonggi Bay. The late Quaternary strata consist of four seismic stratigraphic units, considered as depositional sequences (DS-1, DS-2, DS-3, and DS-4). DS-1 was interpreted as ridge-forming sediments of tidal-flat and estuarine channel-fill facies, formed during the Holocene highstand. DS-2 consists of shallow-marine facies in offshore area, which was formed during the regression of Marine Isotope Stage (MIS)-3 period. DS-3 comprises the lower transgressive facies and the upper highstand tidal-flat facies in proximal ridges and forced regression facies in distal ridges and offshore area. The lowermost DS-4 rests on acoustic basement rocks, considered as the shallow-marine and shelf deposits formed before the MIS-6 lowstand. This study suggests six depositional stages. During the first stage-A, MIS-6 lowstand, the Yellow Sea shelf was subaerially exposed with intensive fluvial incision and weathering. The subsequent rapid and high amplitude rise of sea level in stage-B until the MIS-5e highstand produced transgressive deposits in the lowermost part of the MIS-5 sequence, and the successive regression during the MIS-5d to -5a and the MIS-4 lowstand formed the upperpart of the MIS-5 sequence in stage-C. During the stage-D, from the MIS-4 lowstand to MIS-3c highstand period, the transgressive MIS-3 sequence formed in a subtidal environment characterized by repetitive fluvial incision and channel-fill deposition in exposed area. The subsequent sea-level fall culminating the last glacial maximum (Stage-E) made shallow-marine regressive deposits of MIS-3 sequence in offshore distal area, whereas it formed fluvial channel-fills and floodplain deposits in the proximal area. After the last glacial maximum, the overall Yellow Sea shelf was inundated by the Holocene transgression and highstand (Stage-F), forming the Holocene transgressive shelf sands and tidal ridges.

A Study on the Flood Reduction in Eco-Delta City in Busan using Observation Rainfall and Flood Modelling (관측 강우와 침수모의를 이용한 부산 에코델타시티 수해저감에 관한 연구)

  • Kim, YoonKu;Kim, SeongRyul;Jeon, HaeSeong;Choo, YeonMoon
    • Journal of Wetlands Research
    • /
    • v.22 no.3
    • /
    • pp.187-193
    • /
    • 2020
  • The increase in the area of impervious water due to the recent abnormal weather conditions and rapid urbanization led to a decrease in the amount of low current, resulting in an increase in the amount of surface runoff. Increased surface runoff is causing erosion, destruction of underwater ecosystems, human and property damage in urban areas due to flooding of urban river. The damage has been increasing in Korea recently due to localized heavy rains, typhoons and floods. As a countermeasure, the Busan Metropolitan Government will proceed with the creation of the Eco-Delta City waterfront zone in Busan with the aim of creating a future-oriented waterfront city from 2012 to 2023. Therefore, the current urban river conditions and precipitation data were collected by utilizing SWMM developed by the Environment Protection Agency, and the target basin was selected to simulate flood damage. Measures to reduce flood damage in various cases were proposed using simulated data. It is a method to establish a disaster prevention plan for each case by establishing scenario for measures to reduce flood damage. Considering structural and non-structural measures by performing an analysis of the drainage door with a 30-year frequency of 80 minutes duration, the expansion effect of the drainage pump station is considered to be greater than that of the expansion of the drainage door, and 8 scenarios and corresponding alternatives were planned in combination with the pre-excluding method, which is a non-structural disaster prevention measure. As a result of the evaluation of each alternative, it was determined that 100㎥/s of the pump station expansion and the pre-excluding EL.(-)1.5m were the best alternatives.

Construction of High-Resolution Topographical Map of Macro-tidal Malipo beach through Integration of Terrestrial LiDAR Measurement and MBES Survey at inter-tidal zone (대조차 만리포 해안의 지상 LiDAR와 MBES를 이용한 정밀 지형/수심 측량 및 조간대 접합을 통한 정밀 지형도 작성)

  • Shim, Jae-Seol;Kim, Jin-Ah;Kim, Seon-Jeong;Kim, Sang-Ik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.58-66
    • /
    • 2010
  • In this paper, we have constructed high-resolution topographical map of macro-tidal Malipo beach through integration of terrestrial LiDAR measurement and MBES survey data at inter-tidal zone. To acquire the enough information of inter-tidal zone, we have done terrestrial LiDAR measurement mounted on the roof of vehicle with DGPS through go-stop-scan method at the ebb tide and MBES depth surveying with tide gauge and eye staff measurement for tide correction and MSL calculation at the high tide all together. To integrate two kinds of data, we have unified the vertical coordination standard to Incheon MSL. The mean error of overlapped inter-tidal zone is about 2~6 cm. To verify the accuracy of terrestrial LiDAR, RTK-DGPS measurement have done simultaneously and the difference of Z value RMSE is about 4~7 cm. The resolution of Malipo topographical map is 50 cm and it has constructed to DEM (Digital Elevation Model) based on GIS. Now it has used as an input topography information for the storm-surge inundation prediction models. Also it will be possible to use monitoring of beach process through the long-term periodic measurement and GIS-based 3D spatial analysis calculating the erosion and deposition considering with the artificial beach transition and coastal environmental parameters.

Climate Change Impact Analysis of Urban Inundation in Seoul Using High-Resolution Climate Change Scenario (고해상도 기후시나리오를 이용한 서울지역 배수시스템의 기후변화 영향 분석)

  • Lee, Moon-Hwan;Kim, Jae-Pyo;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.5
    • /
    • pp.345-355
    • /
    • 2015
  • Climate change impact on urban drainage system are analyzed in Seoul by using high-resolution climate change scenario comparing 2000s (1971~2000) with 2020s (2011~2040), 2050s (2041~2070) and 2080s (2071~2100). The historical hourly observed rainfall data were collected from KMA and the climate change scenario-based hourly rainfall data were produced by RegCM3 and Sub-BATS scheme in this study. The spatial resolution obtained from dynamic downscaling was $5{\times}5km$. The comparison of probability rainfalls between 2000s and 2080s showed that the change rates are ranged on 28~54%. In particular, the increase rates of probability rainfall were significant on 3, 6 and 24-hour rain durations. XP-SWMM model was used for analyzing the climate change impacts on urban drainage system. As the result, due to the increase of rainfall intensities, the inundated areas as a function of number of flooded manhole and overflow amounts were increasing rapidly for the 3 future periods in the selected Gongneung 1, Seocho 2, Sinrim 4 drainage systems. It can be concluded that the current drainage systems on the selected study area are vulnerable to climate change and require some reasonable climate change adaptation strategies.

Application and Comparison of Dynamic Artificial Neural Networks for Urban Inundation Analysis (도시침수 해석을 위한 동적 인공신경망의 적용 및 비교)

  • Kim, Hyun Il;Keum, Ho Jun;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.671-683
    • /
    • 2018
  • The flood damage caused by heavy rains in urban watershed is increasing, and, as evidenced by many previous studies, urban flooding usually exceeds the water capacity of drainage networks. The flood on the area which considerably urbanized and densely populated cause serious social and economic damage. To solve this problem, deterministic and probabilistic studies have been conducted for the prediction flooding in urban areas. However, it is insufficient to obtain lead times and to derive the prediction results for the flood volume in a short period of time. In this study, IDNN, TDNN and NARX were compared for real-time flood prediction based on urban runoff analysis to present the optimal real-time urban flood prediction technique. As a result of the flood prediction with rainfall event of 2010 and 2011 in Gangnam area, the Nash efficiency coefficient of the input delay artificial neural network, the time delay neural network and nonlinear autoregressive network with exogenous inputs are 0.86, 0.92, 0.99 and 0.53, 0.41, 0.98 respectively. Comparing with the result of the error analysis on the predicted result, it is revealed that the use of nonlinear autoregressive network with exogenous inputs must be appropriate for the establishment of urban flood response system in the future.

Development of a Prototype for GIS-based Flood Risk Map Management System (GIS를 이용한 홍수위험지도 관리시스템 프로토타입 개발에 관한 연구)

  • Kim, Kye-Hyun;Yoon, Chun-Joo;Lee, Sang-Il
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.4 s.129
    • /
    • pp.359-366
    • /
    • 2002
  • The damages from the natural disasters, especially from the floods, have been increasing. Therefore, it is imperative to establish a BMP to diminish the damages from the floods and to enhance the welfare of the nation. Developed countries have been generating and utilizing flood risk maps to raise the alertness of the residents, and thereby achieving efficient flood management. The major objectives of this research were to develop a prototype management system for flood risk map to forecast the boundaries oi the inundation and to plot them through the integration of geographic and hydrologic database. For more efficient system development, the user requirement analysis was made. The GIS database design was done based on the results from the research work of river information standardization. A GIS database for the study area was built by using topographic information to support the hydrologic modeling. The developed prototype include several modules; river information edition module, map plotting module, and hydrologic modeling support module. Each module enabled the user to edit graphic and attribute data, to analyze and to represent the modeling results visually. Subjects such as utilization of the system and suggestions for future development were discussed.

Model Development of Coastal Area Inundation due to Sea-level Rising (해수면 상승에 의한 해안지역 침수모의기법 개발)

  • Kim, Won Bum;Son, Kwang Ik;Jung, Woo Chang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.292-292
    • /
    • 2018
  • 2016년 태풍 "차바"로 인한 부산과 울산지역의 침수 및 2003년 발생한 태풍 "매미"로 인한 마산창원지역의 침수사례는 우리나라 해안도시유역이 해수면 상승에 의한 피해에 노출되어 있음을 간접적으로 입증하는 대표적 사례라 할 수 있다. IPCC 4차 평가보고서에 따르면 전 지구적 차원에서 지난 100년 동안 해수면은 약 1.7 m 상승하였으며, 1961~2003년 사이 해수면 상승률은 연평균 3.1 mm에 이르고 있다. 특히 우리나라 남해안은 연평균 3.4 mm씩 상승하고 있어 전 세계 해수면 평균 상승속도를 상회하고 있다. 또한 1990년대 이전보다 이후 기간에 우리나라에 영향을 준 태풍의 수가 많으며 평균적으로 태풍의 강도 및 해일고가 증가하고 있다. 따라서 전 지구적 해수면 상승과 태풍해일고 증가에 따른 복합적인 해수면 상승으로 인한 해안유역의 침수피해가 증가할 것으로 예상되며 특히 미래 발생 가능한 수퍼태풍에 의한 급격한 해일고의 상승은 해안유역에 침수피해를 더욱 가중시킬 것이라 예상된다. 특히 해수면 상승으로 인한 침수피해 특성은 홍수유출에 의한 내륙 침수피해와는 다른 특성을 보이고 있어 이에 대한 대응기법 개발이 절실한 실정이다. 따라서 본 연구에서는 해수면 상승에 따른 해안도시지역 대한 침수피해 예방 및 저감을 위한 침수모의기법을 개발하고 효율적 대응방안을 선정하는 기법을 제안하였다. 부정류 특성을 지닌 해수면 상승 경계조건 및 건물 간 도로를 통해 흐름이 발생하는 특성을 고려하여 해안지역의 시공적 침수규모 및 유속 등을 예측할 수 있는 2차원 수치모형을 개발하였다. 2003년 발생한 태풍 "매미" 발생 기간 동안 관측된 실제 해일고를 적용하여 창원 등 해안도시유역에 범람모의를 수행하였으며 실제 침수흔적과 비교함으로써 모형을 검증하였다. 또한 해안 경계선을 따라 월파방지벽을 설치하는 경계조건을 도입하여 월파방지벽 높이에 따른 해안도시유역 침수규모를 산정하여 월파방지벽 높이에 따른 시공적 침수규모를 분석함으로써 월파방지벽의 효과를 확인하였다. 본 연구결과는 해안지역 지점별 침수규모 및 최대 침수심 발생시간을 제공함으로써 침수에 따른 중장기적 구조적 대응방안 수립은 물론 초단기적 예상 해수면 상승에 다른 대피경로 제공 등 비구조적 수재해 대응 기법을 제시하는 기초자료를 제공에 활용 할 수 있을 것으로 기대된다.

  • PDF

Experimental study of the air emission effect in the tangential and the multi-stage spiral inlet (접선식 유입구와 다단식 나선 유입구의 공기 배출 효과에 관한 실험적 연구)

  • Seong, Hoje;Rhee, Dong Sop;Park, Inhwan
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.235-243
    • /
    • 2019
  • Recently, urban inundation was frequently occurred due to the intensive rainfall exceeding marginal capacity of the flood control facility. Furthermore, needs for the underground storage facilities to mitigate urban flood are increasing according to rapidly accelerating urbanization. Thus, in this study, drainage efficiency in drain tunnel connecting to underground storage was investigated from the air-core measurements in the drop shaft against two types of inlet structure. In case of the spiral inlet, the multi-stage structure is introduced at the bottom of the inlet to improve the vortex induction effect at low inflow discharge (multi-stage spiral inlet). The average cross-sectional area of the air-core in the multi-stage spiral inlet is 10% larger than the tangential inlet, and show the highly air emission effect and the highly inflow efficiency at the high inflow discharge. In case of the tangential inlets, the air emission effect decreased after exceeding the maximum inflow discharge, which is required to maintain the inherent performance of the tangential inlet. From the measurements, the empirical formula for the cross-sectional area of the air-core according to locations inside the drop shaft was proposed in order to provide the experimental data available for the inlet model used in experiments.

ROC Analysis of Topographic Factors in Flood Vulnerable Area considering Surface Runoff Characteristics (지표 유출 특성을 고려한 홍수취약지역 지형학적 인자의 ROC 분석)

  • Lee, Jae Yeong;Kim, Ji-Sung
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.327-335
    • /
    • 2020
  • The method of selecting an existing flood hazard area via a numerical model requires considerable time and effort. In this regard, this study proposes a method for selecting flood vulnerable areas through topographic analysis based on a surface runoff mechanism to reduce the time and effort required. Flood vulnerable areas based on runoff mechanisms refer to those areas that are advantageous in terms of the flow accumulation characteristics of rainfall-runoff water at the surface, and they generally include lowlands, mild slopes, and rivers. For the analysis, a digital topographic map of the target area (Seoul) was employed. In addition, in the topographic analysis, eight topographic factors were considered, namely, the elevation, slope, profile and plan curvature, topographic wetness index (TWI), stream power index, and the distances from rivers and manholes. Moreover, receiver operating characteristic analysis was conducted between the topographic factors and actual inundation trace data. The results revealed that four topographic factors, namely, elevation, slope, TWI, and distance from manholes, explained the flooded area well. Thus, when a flood vulnerable area is selected, the prioritization method for various factors as proposed in this study can simplify the topographical analytical factors that contribute to flooding.