Fig. 1. Descriptions of the tangential inlet
Fig. 2. Descriptions of the spiral inlet
Fig. 3. Descriptions of the multi-stage spiral inlet
Fig. 4. Outlines of the experiment channel
Fig. 5. Measuring instruments for the air-core size
Fig. 6. Experimental model of inlet structures
Fig. 7. Air-core size measurement points in the drop shaft
Fig. 8. Measuring points to investigate the air-core size
Fig. 9. Shape of the air-core according to the inflow discharge
Variations of Aa /Ad against the vertical location in the drop shaft
Fig. 11. Comparisons of Aam /Ad according to inlet structures
Fig. 12. Comparisons of Aaa /Ad according to inlet structures
Fig. 13. Comparison of the empirical formula results and the measurements
Table 1. Experimental conditions
References
- Drainage Services Department (DSD). (2003). Stormwater drainage master plan study in northern Hong Kong Island - Executive summary. The Government of Hong Kong Special Administrative Region, Drainage Services Department, Hong Kong.
- Drioli, C. (1947). "Su un particolare tipo di imbocco per pozzidi scarico." L'Energia Elettrica, Vol. 24, No. 10, pp. 447-452.
- Giudice, G. D., and Gisonni, C. (2011). "Vortex dropshaft retrofitting: case of Naples city (Italy)." Journal of Hydraulic Research, Vol. 49, No. 6, pp. 804-808. https://doi.org/10.1080/00221686.2011.622148
- Hager, W. H. (1999). Wastewater Hydraulics. Springer, Berlin, New York, USA.
- Jain, S. C. (1984). "Tangential vortex-inlet." Journal of Hydraulic Engineering, Vol. 110, No. 12, pp. 1683-1699. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1683)
- Jain, S. C., and Ettema, R. (1987). Swirling flow problems at intakes-Vortex-flow intakes. IAHR Hydraulic Structures Design Manual, Balkema, Rotterdam, Netherlands, pp. 125-137.
- Jevdjevich, V., and Levin, L. (1953). "Entrainment of air in flowing water and technical problems connected with It." Proceedings of the Minnesota International Hydraulics Convention, ASCE.
- Mulligan, S., Casserly, J., and Sherlock, R. (2016). "Effects of geometry on strong free-surface vortices in subcritical approach flows." Journal of Hydraulic Engineering, Vol. 142, No. 11, 04016051. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001194
- Oh, J. O., Park, J. H., Park, C, K., and Jun, S. M. (2016). "Hydraulic stability evaluation for deep tunnel on continuous precipitation." Proceedings of Korea Water Resources Association, Daejeon, Korea, p. 99.
- Park, S. W., Kim, H. J., and Rhee, D. S. (2016). "Hydraulic analysis of air-core patterns with various discharge and improving inlet part of the underground bypass model." Proceedings of Korea Water Resources Association, Daejeon, Korea, p. 369.
- Quick, M. (1990). "Analysis of spiral vortex and vertical slot vortex drop shafts." Journal of Hydraulic Engineering, Vol. 116, No. 3, pp. 309-325. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:3(309)
- Seong, H., Park, I., and Rhee, D. S. (2018). "Study of hydraulic characteristics with the shape of the intake of an underground inflow facility using hydraulic experiments", Journal of the Korean Society of Safety, Vol. 33, No. 4, pp. 119-126. https://doi.org/10.14346/JKOSOS.2018.33.4.119
- Szirtes, T. (2007). Applied dimensional analysis and modeling. Elsevier, Burlington, Massachusetts, USA.
- Vischer, D. L., and Hager, W. H. (1995). Energy dissipators - Vortex drops. IAHR Hydraulic Structures Design Manual, Taylor & Francis, New York, USA, pp. 167-181.
- Yu, D., and Lee, H. W. (2009). "Hydraulics of tangential vortex intake for urban drainage." Journal of Hydraulic Engineering, Vol. 135, No. 3, pp. 164-174. https://doi.org/10.1061/(ASCE)0733-9429(2009)135:3(164)
- Zhao, C. H., Zhu, D. Z., ASCE, M., Sun, S. K., and Liu, Z. P. (2006). "Experimental study of flow in a vortex drop shaft." Journal of Hydraulic Engineering, Vol. 132, No. 1, pp. 61-68. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:1(61)