Browse > Article
http://dx.doi.org/10.12652/Ksce.2018.38.5.0671

Application and Comparison of Dynamic Artificial Neural Networks for Urban Inundation Analysis  

Kim, Hyun Il (Kyungpook National University)
Keum, Ho Jun (Kyungpook National University)
Han, Kun Yeun (Kyungpook National University)
Publication Information
KSCE Journal of Civil and Environmental Engineering Research / v.38, no.5, 2018 , pp. 671-683 More about this Journal
Abstract
The flood damage caused by heavy rains in urban watershed is increasing, and, as evidenced by many previous studies, urban flooding usually exceeds the water capacity of drainage networks. The flood on the area which considerably urbanized and densely populated cause serious social and economic damage. To solve this problem, deterministic and probabilistic studies have been conducted for the prediction flooding in urban areas. However, it is insufficient to obtain lead times and to derive the prediction results for the flood volume in a short period of time. In this study, IDNN, TDNN and NARX were compared for real-time flood prediction based on urban runoff analysis to present the optimal real-time urban flood prediction technique. As a result of the flood prediction with rainfall event of 2010 and 2011 in Gangnam area, the Nash efficiency coefficient of the input delay artificial neural network, the time delay neural network and nonlinear autoregressive network with exogenous inputs are 0.86, 0.92, 0.99 and 0.53, 0.41, 0.98 respectively. Comparing with the result of the error analysis on the predicted result, it is revealed that the use of nonlinear autoregressive network with exogenous inputs must be appropriate for the establishment of urban flood response system in the future.
Keywords
Dynamic neural network; Data-driven model; Error analysis; Urban flood;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lee, B. H. (2006). "A study on the characteristics and composition direction of urban flood control system." Water and Future, pp. 50-54.
2 Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D. and Veith, T. L. (2007). "Model evaluation guidelines for systematic quantification of accuracy in watershed simulations." ASABE., Vol. 50, No. 3, pp. 885-900.   DOI
3 Oh, J. W., Park, J. H. and Kim, Y. K. (2008). "Missing hydrological data estimation using neural network and real time data reconciliation." Journal Korea Water Resour. Assoc., Vol. 41, No. 10, p. 1059 (in Korean).   DOI
4 Pan, T. Y., Lai, J. S., Chang, T. J., Chang, H. K., Chang, K. C. and Tan, Y. C. (2011). "Hybrid neural networks in rainfall-inundation forecasting based on a synthetic potential inundation database." Nat. Hazards Earth Syst. Sci., Vol. 11, pp. 771-787.   DOI
5 Seoul Metropolitan City. (2015). Comprehensive Plan for Storm and Flood Damage Reduction (in Korean).
6 Shen, H. Y. and Chang, L. C. (2013). "Online multistep-ahead inundation depth forecasts by recurrent NARX networks." Hydrol. Earth Syst. Sci., Vol. 17, pp. 935-945.   DOI
7 Son, A. L. and Han, K. Y. (2014). "The development of urban inundation reduction model combined real-time data-driven estimation and 2D hydraulic analysis." Proc. of Conf. Korean Society of Hazard Mitigation, Vol. 2014, p. 90.
8 Toth, E., Brath, A. and Montanari, A. (2000). "Comparison of short-term rainfall prediction models for real-time flood forecasting." Journal Hydrol., Vol. 239, pp. 132-147.   DOI
9 Tsai, M. H., Sung, E. X. and Kang, S. C. (2016). "Data-driven flood analysis and decision support." Nat. Hazards Eearth Syst, Sci. Discuss., doi:10.5194/nhess-2016-141.   DOI
10 Yoon, K. H., Seo, B. C. and Shin, H. S. (2004). "Dam inflow forecasting for short term flood based on neural networks in nakdong river basin." Journal Korea Water Resour. Assoc., Vol. 37, No. 1, pp. 67-75 (in Korean).   DOI
11 Chang, F. J., Chen, P. A., Lu, Y. R., Huang, E. and Chang, K. Y. (2014a). "Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control." Journal Hydrol., Vol. 517, pp. 836-846.   DOI
12 Ha, C. Y. (2017). Parameter Optimization Analysis in Urban Flood Simulation by Applying 1D-2D Coupled Hydraulic Model. Ph.D. Thesis, Kyungpook National University.
13 Chang, L. C., Shen, H. Y. and Chang, F. J. (2014b). "Regional flood inundation nowcast using hybrid SOM and dynamic neural networks." Journal Hydrol., Vol. 519, pp. 476-489.   DOI
14 Chang, L. C., Shen, H. Y., Wang, Y. F., Huang, J. Y. and Lin, Y. T. (2010). "Clustering-based hybrid inundation model for forecasting flood inundation depths." Journal Hydrol., Vol. 385, pp. 257-268.   DOI
15 Choi, S. M., Yoon, S. S. and Choi, Y. J. (2015). "Evaluation of high-resolution QPE data for urban runoff analysis." Journal Korea Water Resour. Assoc., Vol. 48, pp. 719-728 (in Korean).   DOI
16 Jang, S. H., Yoon, J. Y. and Yoon, Y. N. (2006). "A study on the improvement of Huff's method for applying in Korea : II. Improvement of Huff's method." Journal Korea Water Resour. Assoc., Vol. 39, No. 9, pp. 779-786 (in Korean).   DOI
17 Jung, K. J. (2005). "Development of the infiltration damage prediction model in a catchment using artificial neural networks." J. Korean Society of Hazard Mitigation, Vol. 5, No. 2, p. 5 (in Korean).
18 Kang, J. E. and Lee, M. J. (2015). "Analysis of urban infrastructure risk areas to flooding using neural network in Seoul." J. Korean Soc. Civ. Eng., Vol. 35, No. 4, p. 997 (in Korean).   DOI