• Title/Summary/Keyword: intuitive thinking

Search Result 77, Processing Time 0.024 seconds

An analysis of characteristics of mathematically gifted high school students' thinking in design activities using GrafEq (GrafEq를 활용한 디자인 활동에서 나타나는 수학영재아의 사고특성분석)

  • Lee, Ji Won;Shin, Jaehong;Lee, Soo Jin
    • Journal of the Korean School Mathematics Society
    • /
    • v.16 no.3
    • /
    • pp.539-560
    • /
    • 2013
  • The purpose of this study was to investigate characteristics of mathematically gifted high school students' thinking in design activities using GrafEq. Eight mathematically gifted high school students, who already learned graphs of functions and inequalities necessary for design activities, were selected to work in pairs in our experiment. Results indicate that logical thinking and mathematical abstraction, intuitive and structural insights, flexible thinking, divergent thinking and originality, generalization and inductive reasoning emerged in the design activities. Nonetheless, fine-grained analysis of their mathematical activities also implies that teachers for gifted students need to emphasize both geometric and algebraic aspects of mathematical subjects, especially, algebraic expressions, and the tasks for the students are to be rich enough to provide a variety of ways to simplify the expressions.

  • PDF

Analysis of Non-Computer Majors' Difficulties in Computational Thinking Education (Computational Thinking 교육에서 나타난 컴퓨터 비전공 학습자들의 어려움 분석)

  • Kim, Soohwan
    • The Journal of Korean Association of Computer Education
    • /
    • v.18 no.3
    • /
    • pp.49-57
    • /
    • 2015
  • The purpose of this study is to provide considerations through investigation and analysis about non-computer major learners' difficulties in computational thinking education. In recent, the importance of human resources development in convergence based on computational thinking is increasing internationally and a Korean university is selecting CT as a mandatory subject. I taught CT with Scratch at C university in Seoul for two semesters in 2014 and investigated and analyzed what difficulties non-Computer majors felt in the process of CT education. The result showed they felt the following some difficulties in order: the concept of variable and list; to think a idea and implement it; which commands should be selected. The pleasure and the interest can be apply to decrease difficulty, because they affect self-programming ability and self-CT capability each other statistically. Although Scratch is an easy and an intuitive programming language, it is needed to consider to provide appropriate learning time to student for using and applying commands.

Creative Engineering Design Education Utilizing the Problem-solving Process and Skills of Critico(-Creative) Thinking (비판(-창의)적 사고의 문제 해결 과정과 기량을 활용한 창의 공학 설계 교육)

  • Park, Sang Tae;Kim, Jedo
    • Journal of Engineering Education Research
    • /
    • v.24 no.2
    • /
    • pp.68-75
    • /
    • 2021
  • ABEEK recommends convergent engineering projects to nurture creative problem-solving ability for 1st year engineering students through 'Creative Engineering Design' course. However, 1st year engineering students, who have not yet studied core subjects in engineering, have difficulties understanding and coping with the challenges posed by the engineering-related projects. For this reason, the educational objectives of this course are usually frustrating to achieve by the instructor. In this paper, by using the problem-solving process and skills of critico(-creative) thinking, we prepare guidelines for creative engineering design education that allow 1st-year students to effectively participate in engineering projects without a complete understanding of the design process which is to be studied. Also, we present a case study that applies the guidelines to an on-going creative engineering design course and discusses the outcomes by showing student-generated works. The results showed that the intuitive content and everyday expression of critico(-creative) thinking education enabled the instructor to effectively guide their students through the requirements of engineering projects without relying on advanced engineering design methods, and that the application of these guidelines also helped improve students' communication skills, including presentation. We show that the guidelines for creative engineering design education utilizing the problem-solving process and skills of critico(-creative) thinking is not only contributing to achieving the educational objectives of the creative engineering design course but can also be an educational paradigm that incorporates critico(-creative) thinking education into engineering education.

Difference between Gifted and Regular High School Students in Mathematical Thinking Ability (고등학교 수학영재와 일반학생의 수학적 사고력의 비교)

  • Hwang, Dong-Jou;Lee, Kang-Sup
    • Journal of Gifted/Talented Education
    • /
    • v.21 no.4
    • /
    • pp.847-860
    • /
    • 2011
  • In this study, the instrument of mathematical thinking ability tests were considered, and the differences between gifted and regular high school students in the ability were investigated by the test. The instrument consists of 9 items, and verified its quality due to reliability. Participants were 353 regular and 252 gifted high school students from tenth grade. As a result, not only organizing ability of information but also ability of space perception and visualization and intuitive insight ability could be the characteristics of the mathematical giftedness.

A Study on Differences in Fashion Consumption Behavior According to MBTI Personality Indicators and Fashion Brand Sensibility (MBTI 성격 지표와 패션 브랜드 감성에 따른 패션소비성향 차이 연구)

  • Ha Youn Kim;Yunjeong Kim
    • Journal of Fashion Business
    • /
    • v.27 no.5
    • /
    • pp.44-59
    • /
    • 2023
  • This study aimed to elucidate any differences in fashion consumption tendencies among fashion consumers according to their MBTI personality types and fashion brand sensibility (Chanel vs. Off-White). Differences in fashion consumption tendencies (fashion sensitivity, fashion innovativeness, and fashion ostentation) were determined based on two of MBTI's four bipolar indicators: extroversion-introversion, sensing-intuition, thinking-feeling, and judging-perceiving. It was found that intuitive consumers showed higher fashion innovativeness than sensory consumers. In addition, feeling-type consumers showed more fashion-sensitive and ostentatious fashion consumption tendencies than thinking-type consumers. Fashion brand sensibility acted as a moderator in the relationship between personality type and fashion consumption tendency. Especially, moderating effects of fashion brand sensibility and fashion consumption tendencies were evident in sensing-intuition and judging-perceiving types. Among intuitive consumers, those who preferred Chanel brand sensibility exhibited higher tendencies for fashion ostentation than those who preferred Off-White brand sensibility. However, sensory type consumers showed no difference in fashion ostentation based on their preferred fashion brand sensibility. Interaction effects regarding fashion sensitivity and fashion innovativeness were not found. Among perceiving-type consumers who preferred Chanel brand sensibility, high fashion sensitivity was evident. Conversely, judgment-type consumers who preferred Off-White brand sensibility showed high fashion sensitivity. Interaction effects concerning fashion innovativeness and fashion ostentation were not found.

The Intuition in History of Mathematical Philosophy and Mathematics (수리철학과 수학의 역사에서 직관)

  • Lee Dae Hyun
    • Journal for History of Mathematics
    • /
    • v.18 no.2
    • /
    • pp.23-30
    • /
    • 2005
  • Intuition has played an important role in process of invention of mathematics and given understanding of mathematical truth and the direction of solution. So, I review about intuition in history of mathematical philosophy and mathematics because we need systematic research about intuition for search of the methods for enhancement of intuition in mathematics education. According to the research of scholars who emphasize intuitive education, intuition is common feature which everybody hold and is not special feature which particular person hold. In addition, intuition is universal ability that can enhance by proper instruction. So, we have to emphasize the importance of the development of intuition and education which emphasize creative thought via intuition.

  • PDF

The Introduction of Design Thinking to Science Education and Exploration of Its Characterizations as a Method for Group Creativity Education (집단 창의성 교육을 위한 방안으로서 과학 교육에 디자인적 사고의 도입과 속성 탐색)

  • Lee, Dohyun;Yoon, Jihyun;Kang, Seong-Joo
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.2
    • /
    • pp.93-105
    • /
    • 2014
  • Group creativity has recently been heightened as a core competence in the 21st century. Therefore, there is a need for introduction of concepts on design thinking emphasizing the collaboration and empathy to science education as an effective method for fostering group creativity. Understanding design thinking for effective introduction should be preceded, so we explore the characterizations of design thinking through the generic model overlay method, focus group interview, and critical incident technique analysis. The results reveal 4 cluster units of competency and 15 core competencies. The collaboration cluster consists of 5 competencies and they are as follows: organization of the team, communication, self-control, persuasiveness, and initiative competency. The integrative thinking cluster consists of 3 competencies and they are as follows: analytical, strategic, and intuitive thinking competency. The human-centeredness cluster consists of 3 competencies and they are as follows: user-orientation, relationship building, and interpersonal understanding competency. The multidisciplinary cluster consists of 4 competencies and they are as follows: achievement orientation, information seeking, curiosity, and flexibility competency. Findings are expected to provide the basic data for developing programs and establishing strategies in order to foster group creativity as well as introducing design thinking to science education effectively.

Analysis on Creative Thinking Leaning Between Scientifically Gifted Students and Normal Students (과학영재와 일반학생들의 창의적 사고 편향에 대한 분석)

  • Chung, Duk-Ho;Park, Seon-Ok
    • Journal of Gifted/Talented Education
    • /
    • v.21 no.1
    • /
    • pp.175-191
    • /
    • 2011
  • This study is to investigate the creative thinking style and it's leaning that normal students and scientifically gifted students use mainly at processing information. Right Brain vs Left Brain Creativity Test(R/LCT) and Brain Preference Indicator(BPI) is taken to investigate the creative thinking style of normal students(N=144) and scientifically gifted students(N=97). In the R/LCT, the normal students responded that they prefer to use right-brain thinking rather than left-brain thinking. But the scientifically gifted students prefer to left-brain thinking. The normal students showed most preference for Holistic Processing of right side brain and they did most avoiding for Verbal Processing of left side brain. The scientifically gifted students showed most preference for Logical Processing of left side brain. And they did most avoiding for Random Processing of right side brain. There was a meaningful difference between left side brain preference group and right side brain preference group on Sequential, Symbolic, Logical, Verbal, Random, Intuitive, Fantasy-oriented Processing of normal Students. But the scientifically gifted students showed a meaningful difference in right side brain processing mainly. In other word, all the scientifically gifted students took an lean processing in Logical, Symbolic, Linear Processing, etc. In sum, the scientifically gifted students are unequal in at processing information against the normal students. So it is required more appropriate teaching-learning method based on the creative thinking style and it's leaning for effective gifted education.

Development of Physical Computing Curriculum in Elementary Schools for Computational Thinking (컴퓨팅 사고력 향상을 위한 초등 피지컬 컴퓨팅 교육과정 개발)

  • Kim, Jaehwi;Kim, Dongho
    • Journal of The Korean Association of Information Education
    • /
    • v.20 no.1
    • /
    • pp.69-82
    • /
    • 2016
  • Block-based educational programming language(EPL) is commonly used due to its availability at low or no cost. It is also preferred tool of computing education due to its intuitive design, ease-of-use and its effectiveness in increasing algorithmic thinking abilities especially in elementary students. Physical computing is also necessary because it brings students closer to real-world problem solving by connecting the real world with the computing environment. However, due to high-cost and required knowledge in electrical engineering, many schools find the education difficult to access. The study shows significant increase in computational thinking abilities in both groups treated with EPL and additional physical computing education.

Development of Emotional Intelligence through A Maker Education Program Based on Design Thinking Process for Undergraduate Students in an University (디자인씽킹 프로세스 기반의 메이커교육 프로그램을 통한 감성지능의 향상 연구: 대학교 사례를 중심으로)

  • Ryu, Yeaeun;Kang, Inae;Jeon, Yongchan
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.7
    • /
    • pp.163-175
    • /
    • 2018
  • The age of the $4^{th}$ Industrial revolution characterized with artificial intelligence leads to increased interest in emotional aspects representing humanity as counterpart competence to the digital literacy, As the educational model to foster emotional intelligence, noticed is 'maker education based on design thinking process,' since it cultivates the spirits of empathy, intuitive thinking, collaboration, communication, sharing, and openness. In this context, this study aimed to examine relationship between the educational model and emotional intelligence. For this purpose, a case study has been conducted with 37 undergraduate students in an University general education class, and the results of data collection and analysis confirmed positive influences of the program in enhancing most components of the emotional intelligence.