• 제목/요약/키워드: intuitive insight ability

검색결과 6건 처리시간 0.022초

직관적 수준에서 초등학생들의 수학 문제해결 과정 분석 (An Analysis on the Elementary Students' Problem Solving Process in the Intuitive Stages)

  • 이대현
    • 한국학교수학회논문집
    • /
    • 제18권3호
    • /
    • pp.241-258
    • /
    • 2015
  • 본 연구의 목적은 직관적 수준에서 초등학생들의 수학 문제해결 과정을 분석하는 것이다. 이를 위해 수와 연산, 도형 및 측정 영역을 대상으로, 알고리즘에 의한 해결에서부터 직관적 판단에 의해 해결이 가능한 8문제로 구성된 검사 도구를 제작하여 조사연구를 실시하였다. 직관적 수준에 따른 결과 분석에서는 본 연구에서 설정한 분석틀을 따랐다. 분석 결과, 직관적 수준에서 해결 가능한 문제에 대한 정답률이 전반적으로 낮게 나타났다. 내용 영역별로 살펴보면, 수와 연산 영역에서는 알고리즘 수준에 의한 정답률이 높았지만, 도형 및 측정 영역에서는 직관적 수준에 의한 정답률이 높았다. 결과 분석을 통해 알고리즘 적용에 필요한 요소가 문제에 제시되지 않은 경우에 학생들은 문제 구조에 대한 통찰을 통해 답을 하려는 경향을 가지고 있다는 것을 알 수 있었다. 이에 통찰을 통해 직관적으로 해결할 수 있는 다양한 문제의 개발과 직관적 원리에 의한 교육 방안을 마련할 필요성을 제기하였다.

고등학교 수학영재와 일반학생의 수학적 사고력의 비교 (Difference between Gifted and Regular High School Students in Mathematical Thinking Ability)

  • 황동주;이강섭
    • 영재교육연구
    • /
    • 제21권4호
    • /
    • pp.847-860
    • /
    • 2011
  • 이 연구에서는 고등학교 수학영재와 일반학생들의 수학적 사고력의 차이를 알아보았다. 이를 위하여 9개의 문항으로 구성된 수학적 사고력 검사를 353명의 일반계 고등학교 1학년 학생과 192명의 과학 고등학교 1학년 학생에게 실시하였다. 그 결과 수학적 사고력의 하위요소인 정보의 조직화 능력, 시각화/공간화 능력 및 직관적 통찰 능력이 수학영재와 일반학생을 구분하는 중요한 특성임을 추출하였다.

수리철학과 수학의 역사에서 직관 (The Intuition in History of Mathematical Philosophy and Mathematics)

  • 이대현
    • 한국수학사학회지
    • /
    • 제18권2호
    • /
    • pp.23-30
    • /
    • 2005
  • 직관은 참된 지식을 발견하는 도구이며 문제해결 과정에서 번뜩이는 아이디어가 발현되는 것으로 받아들여진다. 직관에 의해 우리는 자명한 사실을 즉각적으로 인식하며, 수학적 사실을 발견하는 힘을 부여받는다. 따라서 직관은 논리와 더불어 수학교육에서 강조해야 할 중요한 주제이다. 인 글에서는 수학 교수$\cdot$학습에서 직관적 사고력의 신장을 위해 직관에 대한 체계적인 연구가 필요함을 인식하고, 이를 위해 수리철학의 역사와 수학적 발견의 역사에서 직관에 대하여 알아보았다.

  • PDF

Math Creative Problem Solving Ability Test for Identification of the Mathematically Gifted

  • Cho Seok-Hee;Hwang Dong-Jou
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제10권1호
    • /
    • pp.55-70
    • /
    • 2006
  • The purpose of this study was to develop math creative problem solving test in order to identify the mathematically gifted on the basis of their math creative problem solving ability and evaluate the goodness of the test in terms of its reliability and validity of measuring creativity in math problem solving on the basis of fluency in producing valid solutions. Ten open math problems were developed requiring math thinking abilities such as intuitive insight, organization of information, inductive and deductive reasoning, generalization and application, and reflective thinking. The 10 open math test items were administered to 2,029 Grade 5 students who were recommended by their teachers as candidates for gifted education programs. Fluency, the number of valid solutions, in each problem was scored by math teachers. Their responses were analyzed by BIGSTEPTS based on Rasch's 1-parameter item-response model. The item analyses revealed that the problems were good in reliability, validity, difficulty, and discrimination power even when creativity was scored with the single criteria of fluency. This also confirmed that the open problems which are less-defined, less-structured and non-entrenched were good in measuring math creativity of the candidates for math gifted education programs. In addition, it discriminated applicants for two different gifted educational institutions and between male and female students as well.

  • PDF

한국과 미국의 초등학교 6학년군 학생들의 수학 창의성과 수학적 사고력의 비교 (A Comparison between Korean and American Sixth Grade Students in Mathematical Creativity Ability and Mathematical Thinking Ability)

  • 이강섭;황동주
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제25권1호
    • /
    • pp.245-259
    • /
    • 2011
  • 본 연구는 한국교육개발원에서 개발한 '수학 창의적 문제해결력 검사'를 사용하여 한국과 미국의 초등학교 6학년군 학생들의 수학 창의성과 수학적 사고력을 비교한 것이다. 연구 대상은 한국의 6학년 학생 212명과 미국의 5~7학년 학생 148명이며, 2009년 4월에 검사를 실시하였다. 본 연구의 도구에 대한 검증은 SPSS 12.0K로 신뢰도(Cronbach ${\alpha}$)와 변별도를 구하고 Rasch의 1모수 문항반응이론으로 적합도 지수와 난이도를 구하였으며, 연구 자료에 대한 통계적 분석은 t-검정, 일원변량분석과 Scheffe의 다중 비교를 사용하였다. 연구 결과로서, 한국 학생들이 미국 학생들보다 수학 창의성과 수학적 사고력에서 높은 점수를 얻었고 또 수학 창의성과 수학적 사고력에서 수학 개념의 이해가 중요한 요인임을 확인하였다. 또한 미국 학생들의 경우 초등학교 5학년과 6학년은 수학 창의성의 모든 하위 영역에서 차이가 있었으며 수학적 사고력에서는 6개의 하위영역 중 4개에서 차이가 있음을 발견하였다. 이것은 초등학교 5학년과 6학년을 하나의 학년군으로 하는 2009 개정 교육과정에 시사점을 줄 것이다.

중학교 수학 영재 판별을 위한 수학 창의적 문제해결력 검사 개발 (Math Creative Problem Solving Ability Test for Identification of the Mathematically Gifted Middle School Students)

  • 조석희;황동주
    • 영재교육연구
    • /
    • 제17권1호
    • /
    • pp.1-26
    • /
    • 2007
  • 본 연구의 목적은 중학교 수학 영재를 수학 창의적 문제해결력 검사로 판별할 때, 유창성만을 기준으로 수학 창의적 문제해결력을 채점하는 방식의 신뢰도와 타당도를 검증하는데 있다. 이를 위해서 수학영역에서의 직관적 통찰능력, 정보의 조직화 능력, 추론능력, 일반화 및 적용능력, 추상화능력, 공간화/시각화 능력, 반성적 사고력을 요구하는 문항들로 구성된 검사를 개발했다. 고급한 수학적 사고력을 요구하며 정답이 하나인 폐쇄적인 수학문항 10개와 다양한 답이 가능한 개방적인 수학 문항 5개를 영재교육기관의 교육대상자 선발과정에 지원한 중학교 1학년 1,032명에게 실시했다. 교사들은 각 문제에 대해 타당한 답을 제시한 빈도로 유창성을 채점했다. 학생들의 반응을 Rasch의 1모수 문항반응모형을 기반으로 한 BIGSTEPS로 분석했다. 문항반응 분석결과, 유창성만으로 측정한 창의성을 기준으로 한 영재교육대상자 선발의 신뢰도, 타당도, 난이도, 변별도가 모두 양호한 것으로 나타났다. 특히 덜 정의되고, 덜 구조화되고, 신선한 문제일수록 영재교육대상자 선발과정에 지원한 학생들의 수학 창의적 문제해결력을 평가하는데 양호한 문제임이 확인되었다. 이 검사는 영재교육원 지원생들이 영재학급 지원생들보다 창의적 문제해결력에서 더 우수함을 확인해주었다. 이로써 유창성만을 기준으로 수학 창의적 문제해결력을 채점하는 방식이 효율적이며, 타당하고 신뢰로울 수 있음을 확인해 주었다.