Browse > Article
http://dx.doi.org/10.7468/jksmee.2011.25.1.245

A Comparison between Korean and American Sixth Grade Students in Mathematical Creativity Ability and Mathematical Thinking Ability  

Lee, Kang-Sup (Dept. of Math. Ed., Dankook University)
Hwang, Dong-Jou (Dept. of Math. Ed., Ajou University)
Publication Information
Communications of Mathematical Education / v.25, no.1, 2011 , pp. 245-259 More about this Journal
Abstract
In this study, the instrument of mathematical creative problem solving ability test were considered the differences between Korean and American sixth grade students in mathematical creativity ability and mathematical thinking ability. The instrument consists of 9 items. The participants for the study were 212 Korean and 148 American students. SPSS were carried out to verify the validities and reliability. Reliabilities(Cronbach ${\alpha}$) in mathematical creativity ability is 0.9047 and in mathematical thinking ability is 0.9299 which were satisfied internal validity evaluation on the test items. Internal validity were analyzed by BIGSTEPS based on Rasch's 1-parameter item response model. The results of this study can serve as a foundation for understanding the Korean and American students differences in mathematical creativity ability and mathematical thinking ability. Especially we get the some informations on mathematical creativity ability for American's fifth grade to seventh grade students.
Keywords
mathematical creativity ability; mathematical thinking ability; intuitive insight ability; organizing ability of information; ability of space perception and visualization; mathematical reasoning ability; mathematical abstraction ability; generalization and application ability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fletcher, F. M. (1958). Manpower for tomorrow: A challenge. Personnel & Guildance Journal, 37, 32-39.   DOI
2 Davis, R. B. (1996). Cognition, mathematics, and education. In Theories of mathematical learning (Ed.) L. P. Steffe, P. Nescher, P. Cobb, G. A. Golden, & B. Greer. Mahwah, NJ: Lawrence Erilbaum.
3 Feuerstein, R. (1980). Instrumental enrichment: an intervention program for mathematics education. London: Croom Helm.
4 황동주.이강섭.서종진 (2005). Relationship between Divergent Thinking in Mathematical and Non-Mathematical Situations -Based on the TTCT; Figural A and the MCPSAT. 영재교육연구. 25(2), 51-66. 서울: 한국영재학회.
5 Camp, G. C. (1994). A longtiudinal study of correlates of creativity. Creativity Research Journal, 7, 125-144.   DOI   ScienceOn
6 하주현 (2001). 창의적 사고의 발달경향 연구. 대한사고개발학회 2001 연차학술발표대회 발표논문. 75-86. 대구: 대한사고력학회.
7 황동주 (2005). 수학 영재 판별의 타당도 향상을 위한 수학 창의성 및 문제 해결력 검사 개발과 채점 방법에 관한 연구. 단국대학교 대학원 박사학위 논문.
8 이지현 (2005). 수학적 사고력과 수학적 힘의 신장을 강조하는 한국과 미국 초등 수학 교과서 곱셈단원 사례 비교 분석: 학습자 수행 용어를 중심으로. 교육과정연구. 23(1), 147-172. 서울: 한국교육과정학회.
9 조한혁.안준화.우혜영 (2002). 컴퓨터를 통한 수학적 사고력 신장의 가능성 모색. 한국수학교육학회지 시리즈 E <수학교육 논문집>. 14 197-215.
10 신희영.고은성.이경화(2007). 수학영재교육에서 관찰평가와 창의력평가. 학교수학. 9(2). 241-257. 서울: 대한수학교육학회
11 이종희.한정혜 (2002). 논리적 사고력과 공간 시각화 능력이 수학성취도와 문제 해결 과저에 미치는 영향. 교육과정평가연구. 5(1). 191-206. 서울: 한국교육과정평가원.
12 김홍원.김명숙.송상헌 (1996). 수학 영재 판별 도구 개발 연구(I) - 기초 연구 편 -. 한국교육개발원 연구보고 CR96-26, 한국교육개발원.
13 박명전 (2000). 수학 영재의 창의적 문제해결력 신장을 위한 학습 자료 개발. 한국교원대학교 대학원 석사학위 논문.
14 송상헌 (1998). 수학 영재성 측정과 판별에 관한 연구. 서울대학교 대학원 박사학위 논문.
15 김홍원.김명숙.방승진.황동주 (1997). 수학 영재 판별 도구 개발 연구(II) - 검사 제작 편 -. 한국교육개발원 연구보고 CR97-50. 서울: 한국교육개발원.
16 Schoenfeld, A. (1985). Mathematical problem solving. San Diego, CA: Academic Press.
17 Tall, D. (Ed.) (1991). Advanced mathematical thinking. Dordrecht: Kluwer Academic Publishers.
18 Torrance, E. P. (1962). Guilding creative talent. Englewood Cliffs. N.J: Prentice Hall.
19 Krutetskii, V. A. (1976). (J. Teller, Trans.) In J.Kilpatrick, & I. Wirszup (Eds.), The psychology of mathematical abilities in school children. Chicago: University of Chicago Press.
20 Livacre, J. M., & Wright, B. D. (2003). A User's Guide to BIGSTEPS Rasch-Model Computer Program. Winsteps.com.
21 Mason, J., Burton, L., & Stacey, K. (1982). Thinking mathematically. London: Addison-Wesley.
22 Polya, G. (1962). Mathematical discovery: on understanding, learning, and teaching problem solving. New York: Wiley.
23 Romberg, T. A. (1993). How one comes to know. In M. Niss (Ed.), Investigations into assessment in mathematics education. Dordrecht: Kluwer Academic Publishers.