• Title/Summary/Keyword: internal transcribed spacer (ITS) region

Search Result 269, Processing Time 0.027 seconds

Occurrence of the Phytophthora Blight Caused by Phytophthora sansomeana in Atractylodes macrocephala Koidz. (Phytophthora sansomeana에 의한 큰꽃삽주 역병 발생 보고)

  • An, Tae Jin;Park, Myung Soo;Jeong, Jin Tae;Kim, Young Guk;Kim, Yong Il;Lee, Eun Song;Chang, Jae Ki
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.6
    • /
    • pp.404-411
    • /
    • 2019
  • Background: In September 2017, wilting and rhizome rot symptoms were observed on Atractylodes macrocephala Koidz. in Jecheon-si and Eumseong-gun. This study was carried out to isolate hitherto unidentified pathogenic fungi from A. macrocephala and to test the pathogenicity of isolated fungi against Atractylodes spp. genus such as A. macrocephala, A. japonica, and their interspecific hybrids. Methods and Results: The diseased plants were washed with running tap water, and the boundary between the healthy area and the diseased area was cut while the pathogens were isolated by growing cultures from the diseased areas on Phytophthora semi-selective medium. The internal transcribed spacer (ITS) region of the isolates was used in this study for identification. Test plants were cultivated in the glasshouse at 20℃ - 30℃ for 4 months and then used for pathogenicity test. The pots with plants inoculated with mycelial plugs and zoospores were placed at 25℃ for 48 h in a dew chamber where relative humidity was above 95%, and then moved into the glasshouse at 20℃ - 30℃. The presence or absence of pathogenicity of the strains was determined by evaluating the symptom of plant wilting. The inoculation test was performed in three replicates with a non-treated control. Conclusions: On the basis of results of ITS sequence analysis, the strains isolated from the diseased plants was identified as Phytophthora sansomeana. Biological assay using test plants confirmed the pathogenicity of P. sansomeana against Atractylodes macrocephala. This is the first report of rhizome rot in A. macrocephala caused by P. sansomeana.

Genotypic Identification of Cystoisospora in Immunocompromised Patients Using Tm-Variation Analysis

  • Basyoni, Maha M.A.;Elghobary, Hany Ahmed Fouad
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.6
    • /
    • pp.601-606
    • /
    • 2017
  • Cystoisospora is responsible for morbidity in immunocompromised patients. PCR is sensitive for diagnosing Cystoisospora; however, it needs reevaluation for differential molecular diagnosis of cystoisosporiasis. We aimed at evaluating melting curve analysis (MCA) after real-time PCR (qPCR) in diagnosis and genotyping of Cystoisospora as an alternative to conventional PCR. We included 293 diarrheic stool samples of patients attending the Department of Clinical Oncology and Nuclear Medicine of Cairo University Hospitals, Egypt. Samples were subjected to microscopy, nested PCR (nPCR), and qPCR targeting the internal transcribed spacer 2 region (ITS2) of the ribosomal RNA (r RNA) gene followed by melting temperatures ($T_ms$) analysis and comparing the results to PCR-RFLP banding patterns. Using microscopy and ITS2-nPCR, 3.1% and 5.8% of cases were Cystoisospora positive, respectively, while 10.9% were positive using qPCR. Genotyping of Cystoisospora by qPCR-MCA revealed 2 genotypes. These genotypes matched with 2 distinct melting peaks with specified $T_ms$ at $85.8^{\circ}C$ and $88.6^{\circ}C$, which indicated genetic variation among Cystoisospora isolates in Egypt. Genotype II proved to be more prevalent (65.6%). HIV-related Kaposi sarcoma and leukemic patients harbored both genotypes with a tendency to genotype II. Genotype I was more prevalent in lymphomas and mammary gland tumors while colorectal and hepatocellular tumors harbored genotype II suggesting that this genotype might be responsible for the development of cystoisosporiasis in immunocompromised patients. Direct reliable identification and differentiation of Cystoisospora species could be established using $qPCR-T_ms$ analysis which is useful for rapid detection and screening of Cystoisospora genotypes principally in high risk groups.

Seventeen Unrecorded Species from Gayasan National Park in Korea

  • Lee, Hyun;Park, Myung Soo;Park, Ji-Hyun;Cho, Hae Jin;Park, Ki Hyeong;Yoo, Shinnam;Lee, Jun Won;Kim, Nam Kyu;Lee, Jin Sung;Park, Jae Young;Kim, Changmu;Kim, Jae-Jin;Lim, Young Woon
    • Mycobiology
    • /
    • v.48 no.3
    • /
    • pp.184-194
    • /
    • 2020
  • Macrofungi play important roles in forest ecology as wood decayers, symbionts, and pathogens of living trees. For the effective forest management, it is imperative to have a comprehensive overview of macrofungi diversity in specific areas. As a part of the National Institute of Biological Resources projects for discovering indigenous fungi in Korea, we collected macrofungi in Gayasan National Park from 2017 to 2018. These specimens were identified based on morphological characteristics and sequence analysis of internal transcribed spacer (ITS) or the nuclear large subunit rRNA (LSU) region. We discovered 17 macrofungi new to Korea: Butyrea japonica, Ceriporia nanlingensis, Coltricia weii, Coltriciella subglobosa, Crepidotus crocophyllus, Cylindrobasidium laeve, Fulvoderma scaurum, Laetiporus cremeiporus, Lentinellus castoreus, Leucogyrophana mollusca, Marasmius insolitus, Nidularia deformis, Phaeophlebiopsis peniophoroides, Phanerochaete angustocystidiata, Phlebiopsis pilatii, Postia coeruleivirens, and Tengioboletus fujianensis. We described their detailed morphological characteristics.

Twig Blight on Chinese Magnolia Vain Caused by Botryosphaeria dothidea in Korea (Botryosphaeria dothidea에 의한 오미자 줄기마름병)

  • Park, Sangkyu;Kim, Seung-Han;Lee, Seung-Yeol;Back, Chang-Gi;Kang, In-Kyu;Jung, Hee-Young
    • Research in Plant Disease
    • /
    • v.22 no.1
    • /
    • pp.44-49
    • /
    • 2016
  • The twig blight symptoms were observed in Chinese magnolia vine (Schisandra chinensis) at Mungyeong city, Gyeongbuk province, Korea in June 2015. The typical symptoms of infected plant were shriveled and wilted in leaves which led to blight resulted in death. Based on the morphological characteristics, the isolate was suspected as Botryosphaeria sp. Inoculation of isolated pathogen was performed to identify its pathogenicity according to Koch's postulates. Re-isolated fungi from the inoculated stem was showed same morphological characteristics with original pathogen. Phylogenetic analysis was performed using combined sequence of rDNA internal transcribed spacer region, EF1-${\alpha}$ and ${\beta}$-tubulin gene. The isolated pathogen was identified to the B. dothidea by phylogenetic analysis. This is the first report of twig blight on S. chinensis caused by B. dothidea in Korea.

Identification of Grovesinia moricola Causing Zonate Leaf Spots on Lespedeza cyrtobotrya in Korea (참싸리 겹둥근무늬병균 Grovesinia moricola 동정)

  • Park, Ji-Hyun;Jung, Bok-Nam;Lee, Sang-Hyun;Shin, Hyeon-Dong
    • The Korean Journal of Mycology
    • /
    • v.48 no.1
    • /
    • pp.69-74
    • /
    • 2020
  • In September 2017, a heavy damage by premature defoliation with the zonate leaf spots was observed in several shrubs of Lespedeza cyrtobotrya growing at Mt. Obongsan in Chuncheon, Korea. Numerous cone-shaped, white sporophores of a fungus were observed on lesions of the abaxial leaf surface. A similar fungus was isolated in September 2019 from the leaves of L. cyrtobotrya growing at Mt. Taegisan in Hoengseong, Korea. The morphological characteristics of the sporophores were consistent with those of Grovesinia moricola. The species identification was confirmed by sequencing the internal transcribed spacer (ITS) region of the ribosomal DNA from the two isolates (KACC48417 and KACC48934). The fungal pathogenicity was determined by an artificial inoculation in conditions of relative humidity and temperature of 100% and 15±2℃, respectively. This is the first report of association of G. moricola with L. cyrtobotrya in Korea.

Laboratory and Field Evaluations of Entomopathogenic Lecanicillium attenuatum CNU-23 for Control of Green Peach Aphid (Myzus persicae)

  • Kim, Hyang-Yeon;Lee, Hyang-Burm;Kim, Young-Cheol;Kim, In-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1915-1918
    • /
    • 2008
  • An entomopathogenic fungus was isolated from an infected aphid. The isolate conformed most closely to Lecanicillium attenuatum CBS 402.78 (AJ292434) based on the internal transcribed spacer (ITS) region of its 18S rDNA, and thus was designated L. attenuatum CNU-23. Laboratory and field evaluations of CNU-23 blastospores were carried out for the control of green peach aphids. The laboratory evaluations of CNU-23 revealed an aphid mortality of about 80% with an estimated $LT_{50}$ of 3.72 days after the application of CNU-23 at $1{\times}10^6$ blastospores/ml. Meanwhile, the field evaluations of CNU-23 performed on greenhouse pepper plants during the rainy season showed an aphid mortality ranging from 72% to 97%. Significant sporulation was observed in the aphids treated with CNU-23. Therefore, the results suggest that L. attenuatum CNU-23 can be used as a biocontrol agent for green peach aphids on greenhouse pepper plants.

Pink Mold Rot on Asian Pear (Pyrus serotina Rehder) Caused by Trichothecium roseum (Pers.) Link ex Gray in Korea (Trichothecium roseum에 의한 배 분홍빛썩음병 발생)

  • Kwon, Jin-Hyeuk;Lee, Heung-Su;Choi, Si-Lim;Cho, Cho-Yong;Choi, Ok-Hee;Cho, Hyeoun-Suk;Shim, Chang-Ki
    • Korean Journal of Organic Agriculture
    • /
    • v.21 no.3
    • /
    • pp.373-380
    • /
    • 2013
  • A severe pink mold rot on matured asian pear (Pyrus serotina Rehder) fruit occurred in the organic farmers' orchard in Jinju, Korea in October, 2012. Decay of pear fruit appeared as a softened water-soaked symptom that was easily punctured by pressure. Later pink mycelium appeared on the surface of pear fruit and produced a mass of powdery pink conidia spores. Optimum temperature for mycelial growth of T. roseum was $25^{\circ}C$. Conidia showed hyaline, smooth, 2-celled, thick-walled with truncate bases, ellipsoidal to pyriform, and characteristically held together zig-zag chains and $10{\sim}22(34){\times}6{\sim}10(12){\mu}m$ in size. Conidiophore was erect, colorless, unbranched type, and 4-5 ${\mu}m$ width. On the basis of mycological characteristics, pathogenicity test, and molecular identification with the ITS region, the causal fungus was identified as Trichothecium roseum (Pers.) Link ex Gray.

Morphological and Phylogenetic Characteristics of Nematophagous Fungi (식물기생성 선충 포식곰팡이의 형태 및 계통분류학적 특성)

  • Kang, Doo-Sun;Jeon, Han-Ki;Son, Hee-Seong;Whang, Kyung-Sook;Cho, Cheon-Whi
    • Applied Biological Chemistry
    • /
    • v.50 no.2
    • /
    • pp.101-106
    • /
    • 2007
  • Twenty-two strains of nematophagous fungi were isolated from 100 soil samples. Nematophagous fungi were classified into three categories; 3-dimensional adhesive nets (A group), 2-dimensional adhesive nets (B group) and constricting ring (C group). Nine strains were selected and identified on the basis of morphological characteristics (hypha, conidiophore, form and size of conidia, number of conidia, node of conidophore, number and location of septa, size and color of chlamydospore) and ITS (internal transcribed spacer) region of rDNA sequences. As the results, the isolated were identified as belonging to the species of Monacrosporium thaumasium (Kan-2, Kan-4, Kan-11), Arthrobotrys oligospora (Kan-9, Kan-13, Kan-20, Kan-21), A. musiformis (Kan-12), and A. dactyloides (Kan-22).

First Report of Charcoal Rot Caused by Macrophomina phaseolina on Peanut Plants in Korea (땅콩에서 Macrophomina phaseolina에 의한 균핵마름병 발생 보고)

  • Soo Yeon Choi;You Kyoung Lee;Chang Ok Geum;Shinhwa Kim;Hyunjung Chung;Sang-Min Kim;Yong Hoon Lee
    • The Korean Journal of Mycology
    • /
    • v.51 no.4
    • /
    • pp.383-387
    • /
    • 2023
  • Peanut plants showing mild wilt were found in fields of Iksan, Korea, in August 2021. The diseased peanut plants were collected, and the causal pathogens were isolated using potato dextrose agar (PDA) medium. The isolated IS-1 strain formed white mycelia on PDA, which turned black with age. Sclerotia were produced on the PDA and barley leaves laid on water agar 7 d after incubation at 30℃. The sequences of both the internal transcribed spacer (ITS) region and calmodulin gene of IS-1 showed a 100% similarity with that of Macrophomina phaseolina. A phylogenetic tree constructed using the ITS regions of fungal pathogens causing disease in peanut plants indicated that the IS-1 stain belongs to M. phaseolina. The inoculation of IS-1 sclerotia into peanut seedlings resulted in yellowing and wilt symptoms in aboveground plants and brown to dark rots in roots 35-40 d after inoculation. Overall, the morphological characteristics, molecular identification, and pathogenicity of IS-1 indicate that the causal pathogen is M. phaseolina. This is the first report of charcoal rot caused by M. phaseolina on peanut plants in Korea. Further study is needed to develop the control measures for charcoal rot in peanut plants.

ITS2 DNA Sequence Analysis for Eight Species of Delphacid Planthoppers and a Loop-mediated Isothermal Amplification Method for the Brown Planthopper-specific Detection (멸구과 8종의 ITS2 DNA 염기서열 비교 분석과 고리매개등온증폭법(LAMP)을 이용한 벼멸구 특이 진단법)

  • Seo, Bo Yoon;Park, Chang Gyu;Koh, Young-Ho;Jung, Jin Kyo;Cho, Jumrae;Kang, Chanyeong
    • Korean journal of applied entomology
    • /
    • v.56 no.4
    • /
    • pp.377-385
    • /
    • 2017
  • Estimates of evolutionary sequence divergence and inference of a phylogenetic tree for eight delphacid planthopper species were based on the full-length nucleotide sequence of the internal transcribed spacer 2 (ITS2) region. Size of the ITS2 DNA sequence varied from 550 bp in Sogatella furcifera to 699 bp in Nilaparvata muiri. Nucleotide sequence distance ($d{\pm}S.E.$) was lowest between N. muiri and N. bakeri ($0.001{\pm}0.001$), and highest between Ecdelphax cervina and Stenocranus matsumurai ($0.579{\pm}0.021$). Sequence distance between N. lugens and other planthoppers ranged from $0.056{\pm}0.008$ (N. muiri) to $0.548{\pm}0.021$ (S. matsumurai). In the neighbor-joining phylogenetic tree, all planthoppers were clustered separately into a species group, except N. muiri and N. bakeri. The ITS2 nucleotide sequence of N. lugens was used to design four loop-mediated isothermal amplification (LAMP) primer sets (BPH-38, BPH-38-1, BPH-207, and BPH-92) for N. lugens species-specific detection. After the LAMP reaction of three rice planthoppers, N. lugens, S. furcifera, and Laodelphax striatellus, with the four LAMP primer sets for 60 min at $65^{\circ}C$, LAMP products were observed in the genomic DNA of N. lugens only. In the BPH-92 LAMP primer set, the fluorescence relative to that of the negative control differed according to the amount of DNA (0.1 ng, 10 ng, and 100 ng) and incubation duration (20 min, 30 min, 40 min, and 60 min). At $65^{\circ}C$ incubation, the difference was clearly observed after 40 min with 10 ng and100 ng, but with a 60-min incubation period, the minimum DNA needed was 0.1 ng. However, there was little difference in fluorescence among all DNA amounts tested with 20 or 30 min incubations.