• Title/Summary/Keyword: internal model principle

Search Result 75, Processing Time 0.025 seconds

Driver Assistance System for Integration Interpretation of Driver's Gaze and Selective Attention Model (운전자 시선 및 선택적 주의 집중 모델 통합 해석을 통한 운전자 보조 시스템)

  • Kim, Jihun;Jo, Hyunrae;Jang, Giljin;Lee, Minho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.115-122
    • /
    • 2016
  • This paper proposes a system to detect driver's cognitive state by internal and external information of vehicle. The proposed system can measure driver's eye gaze. This is done by concept of information delivery and mutual information measure. For this study, we set up two web-cameras at vehicles to obtain visual information of the driver and front of the vehicle. We propose Gestalt principle based selective attention model to define information quantity of road scene. The saliency map based on gestalt principle is prominently represented by stimulus such as traffic signals. The proposed system assumes driver's cognitive resource allocation on the front scene by gaze analysis and head pose direction information. Then we use several feature algorithms for detecting driver's characteristics in real time. Modified census transform (MCT) based Adaboost is used to detect driver's face and its component whereas POSIT algorithms are used for eye detection and 3D head pose estimation. Experimental results show that the proposed system works well in real environment and confirm its usability.

Design of Class and Causality Model for Diagnosis System of an Emergency Generator in Nuclear Plant (원전 비상 발전기의 고장진단시스템을 위한 클래스 및 인과관계 모형 설계)

  • Ha, Chang-Seung;Part, Jong-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.125-132
    • /
    • 2006
  • The construction of an emergency generator's diagnosis system for the preparation of emergency in nuclear plant is vital. To construct a knowledge base of the diagnosis system, the classes and a causality model should be designed. In order to design those elements, at first. object of the diagnosis system should be defined. After the investigation of normal and abnormal states. the external knowledge such as entities and activities is extracted, that the operational principle of the system. For the conversion of the extracted external knowledge to the internal one, the entities are defined as classes and the activities converted into the causality. Through the recursive configuration of the causality and proper examination, the diagnosis knowledge applicable to the knowledge base is completed. In this paper, it is possible to construct a knowledge base with high portability since the independence of design model is considered through the decision table.

  • PDF

Resonance analysis of cantilever porous graphene platelet reinforced pipe under external load

  • Huang, Qinghua;Yu, Xinping;Lv, Jun;Zhou, Jilie;Elvenia, Marischa Ray
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.409-423
    • /
    • 2022
  • Nowadays, there is a high demand for great structural implementation and multifunctionality with excellent mechanical properties. The porous structures reinforced by graphene platelets (GPLs) having valuable properties, such as heat resistance, lightweight, and excellent energy absorption, have been considerably used in different engineering implementations. However, stiffness of porous structures reduces significantly, due to the internal cavities, by adding GPLs into porous medium, effective mechanical properties of the porous structure considerably enhance. This paper is relating to vibration analysis of fluidconveying cantilever porous graphene platelet reinforced (GPLR) pipe with fractional viscoelastic model resting on foundations. A dynamical model of cantilever porous GPLR pipes conveying fluid and resting on a foundation is proposed, and the vibration, natural frequencies and primary resonant of such a system are explored. The pipe body is considered to be composed of GPLR viscoelastic polymeric pipe with porosity in which Halpin-Tsai scheme in conjunction with the fractional viscoelastic model is used to govern the construction relation of nanocomposite pipe. Three different porosity distributions through the pipe thickness are introduced. The harmonic concentrated force is also applied to the pipe and the excitation frequency is close to the first natural frequency. The governing equation for transverse motions of the pipe is derived by the Hamilton principle and then discretized by the Galerkin procedure. In order to obtain the frequency-response equation, the differential equation is solved with the assumption of small displacement, damping coefficient, and excitation amplitude by the multiple scale method. A parametric sensitivity analysis is carried out to reveal the influence of different parameters, such as nanocomposite pipe properties, fluid velocity and nonlinear viscoelastic foundation coefficients, on the primary resonance and linear natural frequency. Results indicate that the GPLs weight fraction porosity coefficient, fractional derivative order and the retardation time have substantial influences on the dynamic response of the system.

A New Three Winding Coupled Inductor-Assisted High Frequency Boost Chopper Type DC-DC Power Converter with a High Voltage Conversion Ratio

  • Ahmed Tarek;Nagai Shinichiro;Hiraki Eiji;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.99-103
    • /
    • 2005
  • In this paper, a novel circuit topology of a three-winding coupling inductor-assisting a high-frequency PWM boost chopper type DC-DC power converter with a high boost voltage conversion ratio and low switch voltage stress is proposed for the new energy interfaced DC power conditioner in solar photovoltaic and fuel cell generation systems. The operating principle in a steady state is described by using its equivalent circuits under the practical condition of energy processing of a lossless capacitive snubber. The newly-proposed power MOSFET boost chopper type DC-DC power converter with the three-winding coupled inductor type transformer and a single lossless capacitor snubber is built and tested for an output power of 500W. Utilizing the lower voltage and internal resistance power MOSFET switch in the proposed PWM boost chopper type DC-DC power converter can reduce the conduction losses of the active power switch compared to the conventional model. Therefore, the total actual power conversion efficiency under a condition of the nominal rated output power is estimated to be 81.1 %, which is 3.7% higher than the conventional PWM boost chopper DC power conversion circuit topology.

The design of hybrid control system using Fuzzy and AFC (퍼지 및 AFC를 이용한 복합 제어시스템 설계)

  • Kim, Gwan-Hyung;Jeong, Hoi-Seong;Kim, Jun-Su;Cho, Hyun-Cheol;Lee, Hyung-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.545-546
    • /
    • 2012
  • 일반적으로 회전력이 발생하는 제어시스템에 있어서 발생되는 외란과 시스템의 동특성에 의해 발생되는 리플 등을 보정하기 위해 다양한 제어기법들이 연구되고 있다. 특히, 제어시스템에 존재하는 미지의 외란을 제거하기 위하여 AFC(Adaptive Feedforward Cancellation) 제어이론을 적용하여 미지의 외란에 대한 시스템의 안정성을 확보하려고 노력하고 있다. 그러나 기존의 AFC의 구현을 위하여 연속 시간제어시스템의 전달함수인 IMP(Internal Model Principle)를 이용하여 특정 주파수 영역에 대한 외란을 제거하고 있지만 보다 광범위한 영역에 대해서는 제어 성능은 아직 부족한 편이다. 본 논문에서는 기존의 PID 제어기를 이용한 위치제어에 있어서 발생할 수 있는 외란을 제거하기 위해 AFC 제어이론인 IMP 전달함수와 인공지능 기법인 Fuzzy 제어기를 추가로 설계하여 모터의 위치제어에 대한 성능과 외란 제어에 대한 성능을 제시하고자 한다.

  • PDF

Fast-Transient Repetitive Control Strategy for a Three-phase LCL Filter-based Shunt Active Power Filter

  • Zeng, Zheng;Yang, Jia-Qiang;Chen, Shi-Lan;Huang, Jin
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.392-401
    • /
    • 2014
  • A fast-transient repetitive control strategy for a three-phase shunt active power filter is presented in this study to improve dynamic performance without sacrificing steady-state accuracy. The proposed approach requires one-sixth of the fundamental period required by conventional repetitive control methods as the repetitive control time delay in the synchronous reference frames. Therefore, the proposed method allows the system to achieve a fast dynamic response, and the program occupies minimal storage space. A proportional-integral regulator is also added to the current control loop to eliminate arbitrary-order harmonics and ensure system stability under severe harmonic distortion conditions. The design process of the corrector in the fast-transient repetitive controller is also presented in detail. The LCL filter resonance problem is avoided by the appropriately designed corrector, which increases the margin of system stability and maintains the original compensation current tracking accuracy. Finally, experimental results are presented to verify the feasibility of the proposed strategy.

The Information System Management and Its Infrastructure for Supply Chain Management as Antecedents of Financial Performance

  • MUNEER, Saqib
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.1
    • /
    • pp.229-238
    • /
    • 2020
  • A model is presented in this paper to provide understanding of the supply chain integration and supply chain information practices' impact on the manufacturing industries. The supply chain information practices play a crucial role in sharing information between the members of SC network. Thus, it is important to develop a comprehensive understanding of the differences and similarities among ISI and information management. It will allow firms to systematically evaluate and carefully choose the information strategy. The empirical findings of this research offer essential and interesting insights about what role SCI, supply chain information and Supply chain ISI play in determining Malaysia's financial performance. The theoretical gaps addressed in this study are of significant importance, since a little empirical evidence is available regarding system infrastructure and supply chain information management's effectiveness. This research provides further paths of exploring system infrastructure and information management, thereby defining the manufacturing industries' next step in SCM struggle i.e. modifying total integrated SC principle in other manufacturing firms. The Resource-based theory discovered organizational resources as an essential organizational success ingredient. Therefore, in order to recognize its potential value, internal resources, for instance, information system and management must be fully utilized.

Free vibration analysis of nonlocal viscoelastic nanobeam with holes and elastic foundations by Navier analytical method

  • Ola A. Siam;Rabab A. Shanab;Mohamed A. Eltaher;Norhan A. Mohamed
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.3
    • /
    • pp.257-279
    • /
    • 2023
  • This manuscript is dedicated to deriving the closed form solutions of free vibration of viscoelastic nanobeam embedded in an elastic medium using nonlocal differential Eringen elasticity theory that not considered before. The kinematic displacements of Euler-Bernoulli and Timoshenko theories are developed to consider the thin nanobeam structure (i.e., zero shear strain/stress) and moderated thick nanobeam (with constant shear strain/stress). To consider the internal damping viscoelastic effect of the structure, Kelvin/Voigt constitutive relation is proposed. The perforation geometry is intended by uniform symmetric squared holes arranged array with equal space. The partial differential equations of motion and boundary conditions of viscoelastic perforated nonlocal nanobeam with elastic foundation are derived by Hamilton principle. Closed form solutions of damped and natural frequencies are evaluated explicitly and verified with prestigious studies. Parametric studies are performed to signify the impact of elastic foundation parameters, viscoelastic coefficients, nanoscale, supporting boundary conditions, and perforation geometry on the dynamic behavior. The closed form solutions can be implemented in the analysis of viscoelastic NEMS/MEMS with perforations and embedded in elastic medium.

Cloud Security Scheme Based on Blockchain and Zero Trust (블록체인과 제로 트러스트 기반 클라우드 보안 기법)

  • In-Hye Na;Hyeok Kang;Keun-Ho Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.2
    • /
    • pp.55-60
    • /
    • 2023
  • Recently, demand for cloud computing has increased and remote access due to home work and external work has increased. In addition, a new security paradigm is required in the current situation where the need to be vigilant against not only external attacker access but also internal access such as internal employee access to work increases and various attack techniques are sophisticated. As a result, the network security model applying Zero-Trust, which has the core principle of doubting everything and not trusting it, began to attract attention in the security industry. Zero Trust Security monitors all networks, requires authentication in order to be granted access, and increases security by granting minimum access rights to access requesters. In this paper, we explain zero trust and zero trust architecture, and propose a new cloud security system for strengthening access control that overcomes the limitations of existing security systems using zero trust and blockchain and can be used by various companies.

Source Current Control Strategy of Active Power Filters for Unbalanced Load Compensation in Three-Phase Four-Wire Distribution Networks

  • Wang, Lei;Han, Xiaoqing;Meng, Runquan;Ren, Chunguang;Wang, Qi;Zhang, Baifu
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1545-1554
    • /
    • 2018
  • This paper proposes a modified control strategy to improve the performance of three-phase four-leg shunt active power filters (APFs) for the compensation of three phase unbalanced loads. Unbalanced current cannot be obtained accurately by a harmonic detector due to the lower frequency. The proposed control strategy eliminates conventional harmonic detectors by directly regulating the source current. Therefore, the computational complexity is greatly reduced and the performance of the APF is improved. A mathematic model has been developed based on the source currents. The corresponding controllers have been designed based on the sinusoidal internal model principle. The proposed control strategy can guarantee excellent compensation performance and stable operation after an extreme disturbance such as a short circuit fault. In addition, the proposed technique can selectively compensate specific harmonics. A 50kVA prototype APF is implemented in the laboratory to validate the feasibility and performance of the proposed control strategy.