DOI QR코드

DOI QR Code

Free vibration analysis of nonlocal viscoelastic nanobeam with holes and elastic foundations by Navier analytical method

  • Ola A. Siam (Engineering Mathematics Department, Faculty of Engineering, Zagazig University) ;
  • Rabab A. Shanab (Engineering Mathematics Department, Faculty of Engineering, Zagazig University) ;
  • Mohamed A. Eltaher (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Norhan A. Mohamed (Engineering Mathematics Department, Faculty of Engineering, Zagazig University)
  • Received : 2023.05.14
  • Accepted : 2023.06.20
  • Published : 2023.05.25

Abstract

This manuscript is dedicated to deriving the closed form solutions of free vibration of viscoelastic nanobeam embedded in an elastic medium using nonlocal differential Eringen elasticity theory that not considered before. The kinematic displacements of Euler-Bernoulli and Timoshenko theories are developed to consider the thin nanobeam structure (i.e., zero shear strain/stress) and moderated thick nanobeam (with constant shear strain/stress). To consider the internal damping viscoelastic effect of the structure, Kelvin/Voigt constitutive relation is proposed. The perforation geometry is intended by uniform symmetric squared holes arranged array with equal space. The partial differential equations of motion and boundary conditions of viscoelastic perforated nonlocal nanobeam with elastic foundation are derived by Hamilton principle. Closed form solutions of damped and natural frequencies are evaluated explicitly and verified with prestigious studies. Parametric studies are performed to signify the impact of elastic foundation parameters, viscoelastic coefficients, nanoscale, supporting boundary conditions, and perforation geometry on the dynamic behavior. The closed form solutions can be implemented in the analysis of viscoelastic NEMS/MEMS with perforations and embedded in elastic medium.

Keywords

References

  1. Abdelrahman, A.A., Shanab, R.A., Esen, I. and Eltaher, M.A. (2022), "Effect of moving load on dynamics of nanoscale Timoshenko CNTs embedded in elastic media based on doublet mechanics theory", Steel Compos. Struct., 44(2), 241-256. https://doi.org/10.12989/scs.2022.44.2.241.
  2. Abo-bakr, R.M., Shanab, R.A. and Attia, M.A. (2021), "Multi-objective optimization for lightweight design of bi-directional functionally graded beams for maximum frequency and buckling load", Compos. Struct., 278, 114691. https://doi.org/10.1016/j.compstruct.2021.114691.
  3. Abouelregal, A.E. and Sedighi, H.M. (2022), "Thermoelastic characteristics of moving viscoelastic nanobeams based on the nonlocal couple stress theory and dual-phase lag model", Physica Scripta, 97(11), 114003. https://doi.org/10.1088/1402-4896/ac97cc.
  4. Abouelregal, A.E., Mohammad-Sedighi, H., Shirazi, A.H., Malikan, M. and Eremeyev, V.A. (2022), "Computational analysis of an infinite magneto-thermoelastic solid periodically dispersed with varying heat flow based on non-local Moore-Gibson-Thompson approach", Continuum. Mech. Thermodyn., 34(4), 1067-1085. https://doi.org/10.1007/s00161-021-00998-1.
  5. Abouelregal, A.E., Nasr, M.E., Moaaz, O. and Sedighi, H.M. (2023), "Thermo-magnetic interaction in a viscoelastic micropolar medium by considering a higher-order two-phase-delay thermoelastic model", Acta Mechanica, 234(6), 2519-2541. https://doi.org/10.1007/s00707-023-03513-6.
  6. Alasadi, A.A., Ahmed, R.A. and Faleh, N.M. (2019), "Analyzing nonlinear vibrations of metal foam nanobeams with symmetric and non-symmetric porosities", Adv. Aircraft Spacecraft Sci., 6(4), 273-282. https://doi.org/10.12989/aas.2019.6.4.273.
  7. Alazwari, M.A., Daikh, A.A. and Eltaher, M.A. (2022b), "Novel quasi 3D theory for mechanical responses of FG-CNTs reinforced composite nanoplates", Adv. Nano Res., 12(2), 117-137. https://doi.org/10.12989/anr.2022.12.2.117.
  8. Alazwari, M.A., Esen, I., Abdelrahman, A.A., Abdraboh, A.M. and Eltaher, M.A. (2022a), "Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermo-magnetic fields and moving load", Adv. Nano Res., 12(3), 231-251. https://doi.org/10.12989/anr.2022.12.3.231.
  9. Ali, I.A., Alazwari, M.A., Eltaher, M.A. and Abdelrahman, A.A. (2022), "Effects of viscoelastic bonding layer on performance of piezoelectric actuator attached to elastic structure", Mater. Res. Expr., 9(4), 045701. https://doi.org/10.1088/2053-1591/ac5cae.
  10. Alzahrani, E.O., Zenkour, A.M. and Sobhy, M. (2013), "Small scale effect on hygro-thermo-mechanical bending of nanoplates embedded in an elastic medium", Compos. Struct., 105, 163-172. http://doi.org/10.1016/j.compstruct.2013.04.045.
  11. Ansari, R., Oskouie, M.F. andGholami, R. (2016), "Size-dependent geometrically nonlinear free vibration analysis of fractional viscoelastic nanobeams based on the nonlocal elasticity theory", Physica E, 75, 266-271. http://doi.org/10.1016/j.physe.2015.09.022.
  12. Ansari, R., Oskouie, M.F., Sadeghi, F. and Bazdid-Vahdati, M. (2015), "Free vibration of fractional viscoelastic Timoshenko nanobeams using the nonlocal elasticity theory", Physica E, 74, 318-327. http://doi.org/10.1016/j.physe.2015.07.013.
  13. Assie, A.E., Eltaher, M.A. and Mahmoud, F.F. (2010a), "The response of viscoelastic-frictionless bodies under normal impact", Int. J. Mech. Sci., 52(3), 446-454. https://doi.org/10.1016/j.ijmecsci.2009.11.005.
  14. Assie, A.E., Eltaher, M.A. and Mahmoud, F.F. (2010b), "Modeling of viscoelastic contact-impact problems", Appl. Math. Model., 34(9), 2336-2352. https://doi.org/10.1016/j.apm.2009.11.001.
  15. Assie, A.E., Mohamed, S.M., Shanab, R.A., Abo-bakr, R.M. and Eltaher, M.A. (2023), "Static buckling of 2D FG porous plates resting on elastic foundation based on unified shear theories", J. Appl. Comput. Mech., 9(1), 239-258. https://doi.org/10.22055/jacm.2022.41265.3723.
  16. Bagheri, R. and Tadi Beni, Y. (2021), "On the size-dependent nonlinear dynamics of viscoelastic/flexoelectric nanobeams", J. Vib. Control, 27(17-18), 2018-2033. https://doi.org/10.1177/1077546320952225.
  17. Behdad, S., Fakher, M. and Hosseini-Hashemi, S. (2021), "Dynamic stability and vibration of two-phase local/nonlocal VFGP nanobeams incorporating surface effects and different boundary conditions", Mech. Mater., 153, 103633. https://doi.org/10.1016/j.mechmat.2020.103633.
  18. Daikh, A.A., Houari, M.S.A. and Eltaher, M.A. (2021), "A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates", Compos. Struct., 262, 113347. https://doi.org/10.1016/j.compstruct.2020.113347.
  19. Darban, H., Luciano, R., Caporale, A. and Basista, M. (2022), "Modeling of buckling of nanobeams embedded in elastic medium by local-nonlocal stress-driven gradient elasticity theory", Compos. Struct., 297, 115907. https://doi.org/10.1016/j.compstruct.2022.115907.
  20. Demir, C., Mercan, K., Numanoglu, H.M. and Civalek, O. (2018), "Bending response of nanobeams resting on elastic foundation", J. Appl. Comput. Mech., 4(2), 105-114. https://doi.org/10.22055/JACM.2017.22594.1137.
  21. Ding, H.X., Eltaher, M.A. and She, G.L. (2023), "Nonlinear low-velocity impact of graphene platelets reinforced metal foams cylindrical shell: Effect of spinning motion and initial geometric imperfections", Aerosp. Sci. Technol., 140, 108435. https://doi.org/10.1016/j.ast.2023.108435.
  22. Ebrahimi, F. and Fardshad, R.E. (2018), "Dynamic modeling of nonlocal compositionally graded temperature-dependent beams", Adv. Aircraft Spacecraft Sci., 5(1), 141. https://doi.org/10.12989/aas.2018.5.1.141.
  23. Ebrahimi, F. and Heidari, E. (2018), "Surface effects on nonlinear vibration and buckling analysis of embedded FG nanoplates via refined HOSDPT in hygrothermal environment considering physical neutral surface position", Adv. Aircraft Spacecraft Sci., 5(6), 691. https://doi.org/10.12989/aas.2018.5.6.691.
  24. Ebrahimi, F., Babaei, R. and Shaghaghi, G.R. (2018), "Nonlocal buckling characteristics of heterogeneous plates subjected to various loadings", Adv. Aircraft Spacecraft Sci., 5(5), 515. https://doi.org/10.12989/aas.2018.5.5.515.
  25. Ebrahimi, F., karimiasl, M. and Mahesh, V. (2021), "Chaotic dynamics and forced harmonic vibration analysis of magneto-electro-viscoelastic multiscale composite nanobeam", Eng. Comput., 37(2), 937-950. https://doi.org/10.1007/s00366-019-00865-3.
  26. Eltaher, M.A. and Mohamed, N. (2020a), "Nonlinear stability and vibration of imperfect CNTs by doublet mechanics", Appl. Math. Comput., 382, 125311. https://doi.org/10.1016/j.amc.2020.125311.
  27. Eltaher, M.A., Agwa, M. and Kabeel, A. (2018), "Vibration analysis of material size-dependent CNTs using energy equivalent model", J. Appl. Comput. Mech., 4(2), 75-86. https://doi.org/10.22055/JACM.2017.22579.1136.
  28. Eltaher, M.A., Mohamed, N. and Mohamed, S.A. (2020b), "Nonlinear buckling and free vibration of curved CNTs by doublet mechanics", Smart Struct. Syst., 26(2), 213-226. https://doi.org/10.12989/sss.2020.26.2.213.
  29. Eltaher, M.A., Shanab, R.A. and Mohamed, N.A. (2022), "Analytical solution of free vibration of viscoelastic perforated nanobeam", Arch. Appl. Mech., 93(1), 221-243. https://doi.org/10.1007/s00419-022-02184-4.
  30. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  31. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  32. Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020), "Mechanical-hygro-thermal vibrations of functionally graded porous plates with nonlocal and strain gradient effects", Adv. Aircraft Spacecraft Sci., 7(2), 169-186. https://doi.org/10.12989/aas.2020.7.2.169.
  33. Hieu, D.V., Chan, D.Q. and Sedighi, H.M. (2021b), "Nonlinear bending, buckling and vibration of functionally graded nonlocal strain gradient nanobeams resting on an elastic foundation", J. Mech. Mater. Struct., 16(3), 327-346. https://doi.org/10.2140/jomms.2021.16.327.
  34. Hieu, D.V., Hoa, N.T., Duy, L.Q. and Kim Thoa, N.T. (2021a), "Nonlinear vibration of an electrostatically actuated functionally graded microbeam under longitudinal magnetic field", J. Appl. Comput. Mech., 7(3), 1537-1549. https://doi.org/10.22055/JACM.2021.35504.2670.
  35. Hossain, M.M. and Lellep, J. (2021), "Mode shape analysis of dynamic behaviour of cracked nanobeam on elastic foundation", Eng. Res. Expr., 3(4), 045003. https://doi.org/10.1088/2631-8695/ac2a75.
  36. Hosseini, S.A.H., Moghaddam, M.H. and Rahmani, O. (2020), "Exact solution for axial vibration of the power, exponential and sigmoid FG nonlocal nanobeam", Adv. Aircraft Spacecraft Sci., 7(6), 517-536. https://doi.org/10.12989/aas.2020.7.6.517.
  37. Jalaei, M.H., Thai, H.T. and Civalek, Ӧ. (2022), "On viscoelastic transient response of magnetically imperfect functionally graded nanobeams", Int. J. Eng. Sci., 172, 103629. https://doi.org/10.1016/j.ijengsci.2022.103629.
  38. Khadir, A.I., Daikh, A.A. and Eltaher, M.A. (2021), "Novel four-unknowns quasi 3D theory for bending, buckling and free vibration of functionally graded carbon nanotubes reinforced composite laminated nanoplates", Adv. Nano Res., 11(6), 621-640. https://doi.org/10.12989/anr.2021.11.6.621.
  39. Khorshidi, M.A. (2021), "Postbuckling of viscoelastic micro/nanobeams embedded in visco-Pasternak foundations based on the modified couple stress theory", Mech. Time-Depend. Mater., 25(2), 265-278. https://doi.org/10.1007/s11043-019-09439-8.
  40. Malikan, M. and Far, M.N. (2018), "Differential quadrature method for dynamic buckling of graphene sheet coupled by a viscoelastic medium using neperian frequency based on nonlocal elasticity theory", J. Appl. Comput. Mech., 4(3), 147-160. https://doi.org/10.22055/JACM.2017.22661.1138.
  41. Malikan, M., Nguyen, V.B. and Tornabene, F. (2018), "Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory", Eng. Sci. Technol., 21(4), 778-786. https://doi.org/10.1016/j.jestch.2018.06.001.
  42. Martin, O. (2022), "Nonlinear vibrations of fractional nonlocal viscoelastic nanotube resting on a Kelvin-Voigt foundation", Mech. Adv. Mater. Struct., 29(19), 2769-2779. https://doi.org/10.1080/15376494.2021.1878401.
  43. Mechab, B., Mechab, I., Benaissa, S., Ameri, M. and Serier, B. (2016), "Probabilistic analysis of effect of the porosities in functionally graded material nanoplate resting on Winkler-Pasternak elastic foundations", Appl. Math. Model., 40(2), 738-749. http://dx.doi.org/10.1016/j.apm.2015.09.093.
  44. Mindlin, R.D. (1962), Influence of Couple-Stresses on Stress Concentrations, Columbia University at New York.
  45. Mindlin, R.D. (1965), "Second gradient of strain and surface-tension in linear elasticity", Int. J. Solid. Struct., 1(4), 417-438. https://doi.org/10.1016/0020-7683(65)90006-5.
  46. Mohamed, N., Eltaher, M.A., Mohamed, S.A. and Seddek, L.F. (2018), "Numerical analysis of nonlinear free and forced vibrations of buckled curved beams resting on nonlinear elastic foundations", Int. J. Nonlin. Mech., 101, 157-173. https://doi.org/10.1016/j.ijnonlinmec.2018.02.014.
  47. Mohamed, N., Eltaher, M.A., Mohamed, S.A. and Seddek, L.F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., 70(6), 737-750. https://doi.org/10.12989/sem.2019.70.6.737.
  48. Mohammadi, H., Mahzoon, M., Mohammadi, M. and Mohammadi, M. (2014), "Postbuckling instability of nonlinear nanobeam with geometric imperfection embedded in elastic foundation", Nonlin. Dyn., 76(4), 2005-2016. https://doi.org/10.1007/s11071-014-1264-x.
  49. Nadeem, M., He, J.H., He, C.H., Sedighi, H.M. and Shirazi, A. (2022). "A numerical solution of nonlinear fractional newell-whitehead-segel equation using natural transform", Twms J. Pure Appl. Math., 13(2), 168-182.
  50. Nix, W.D. and Gao, H. (1998), "Indentation size effects in crystalline materials: a law for strain gradient plasticity", J. Mech. Phys. Solid., 46(3), 411-425. https://doi.org/10.1016/S0022-5096(97)00086-0.
  51. Noroozi, M. and Ghadiri, M. (2021), "Nonlinear vibration and stability analysis of a size-dependent viscoelastic cantilever nanobeam with axial excitation", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 235(18), 3624-3640. https://doi.org/10.1177/0954406220959104.
  52. Rahmani, A., Faroughi, S., Sari, M. and Abdelkefi, A. (2022), "Selection of size dependency theory effects on the wave's dispersions of magneto-electro-thermo-elastic nano-beam resting on visco-elastic foundation", Eur. J. Mech.-A/Solid., 95, 104620. https://doi.org/10.1016/j.euromechsol.2022.104620.
  53. Ramezannejad Azarboni, H. and Heidari, H. (2022), "Nonlinear primary frequency response analysis of self-sustaining nanobeam considering surface elasticity", J. Appl. Comput. Mech., 8(4), 1196-1207. https://doi.org/10.22055/JACM.2020.33977.2317.
  54. Reza, A., Shishesaz, M. and Sedighi, H.M. (2021), "Micromechanical approach to viscoelastic stress analysis of a pin-loaded hole in unidirectional laminated PMC", Polym. Polymer Compos., 29(9), S1144-S1157. https://doi.org/10.1177/09673911211047340.
  55. Togun, N. (2016), "Nonlocal beam theory for nonlinear vibrations of a nanobeam resting on elastic foundation", Bound. Value Prob., 6(1), 1-14. https://doi.org/10.1186/s13661-016-0561-3.
  56. Togun, N. and Bagdatli, S.M. (2016), "Nonlinear vibration of a nanobeam on a Pasternak elastic foundation based on non-local Euler-Bernoulli beam theory", Math. Comput. Appl., 21(1), 3. https://doi.org/10.3390/mca21010003.
  57. Toupin, R. (1962), "Elastic materials with couple-stresses", Arch. Ration. Mech. Anal., 11(1), 385-414. https://doi.org/10.1007/BF00253945
  58. Wu, Q., Yao, M. and Niu, Y. (2022), "Nonplanar free and forced vibrations of an imperfect nanobeam employing nonlocal strain gradient theory", Commun. Nonlin. Sci. Numer. Simul., 114, 106692. https://doi.org/10.1016/j.cnsns.2022.106692.
  59. You, H., Lim, H.J. and Yun, G.J. (2022). "A micromechanics-based time-domain viscoelastic constitutive model for particulate composites: Theory and experimental validation", Adv. Aircraft Spacecraft Sci., 9(3), 217-242. https://doi.org/10.12989/aas.2022.9.3.217.
  60. Zenkour, A.M. (2017), "Vibration analysis of generalized thermoelastic microbeams resting on Visco-Pasternak", Adv. Aircraft Spacecraft Sci., 4(3), 267. https://doi.org/10.12989/aas.2017.4.3.267.
  61. Zheng, Y.F., Qu, D.Y., Liu, L.C. and Chen, C.P. (2023), "Size-dependent nonlinear bending analysis of nonlocal magneto-electro-elastic laminated nanobeams resting on elastic foundation", Int. J. Nonlin. Mech., 148, 104255. https://doi.org/10.1016/j.ijnonlinmec.2022.104255.