• Title/Summary/Keyword: internal force

Search Result 997, Processing Time 0.034 seconds

Positional Stability Analysis of Trailing Aircraft in Formation Flight (편대비행에서 후방 항공기의 위치 안전성 분석)

  • Cho, Hwan Kee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.2
    • /
    • pp.19-24
    • /
    • 2016
  • Positional stability analysis based on aerodynamic forces and induced moments of formation flight using two small aircraft models is presented. The aerodynamic force and moments of the trailing aircraft are analyzed in the aspect of flight stability. The induced moments with the change of local flow direction by wing-tip vortex from the leading aircraft can affect the flight positional stability of aircraft in closed formation flight. Aerodynamic forces and moments of trailing aircraft model are measured by 6-component internal balance at the 49 locations with vertical and lateral space between two aircraft models. Results are shown that the positional stability of trailing aircraft in formation flight can be analyzed by positional stability derivatives with vertical and lateral space. It is concluded that flying positions can be important factors for aircraft position stability due to induced aerodynamic force and moments with vertical and lateral spacing by the variation of flow pattern from the leading aircraft in formation flight.

Orifice shape effect of the TLCD system under a low frequency (저주파수 하의 TLCD 시스템의 오리피스 형상 효과)

  • Lim, HeeChang
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.1
    • /
    • pp.30-34
    • /
    • 2014
  • Bluff bodies under the external periodic force vibrate at their own natural or forced frequency. Rectangular bodies or similar structures such as high-rise towers and apartments, and recently a well-cited application - offshore floating bodies, usually needs to reduce these vibrations for stability and the mode control. Therefore, this study is aiming to reduce or control the vibration of a structure by a passive control method, i.e., TLCD (Tuned Liquid Column Damper). Controlling a moving body with a TLCD based on a variety of the orifice shape has been preliminary studied. In order to get a proper control, an optimized study is made on the design of the orifice shape, which has internal plates with the holes. The results show the force acting on the body due to the periodic movement highly depends on the number of holes on the plate and the height of the water level. Therefore, the optimum shape of the orifice and the height of the water level should be confirmed by a series of experiments.

Development of New Low Frequency ECT Sensor to Detect Inner Defects(II) - Application to Welding Specimens Included Defects - (내부결함 검출 가능한 저주파 ECT 센서개발(II) - 결함을 가진 소형 용접시험편에 적용 -)

  • Park, Jeong-Ung;Jang, Mun-Seok;Gim, Guk-Ju;Kim, Beom-Ki
    • Journal of Welding and Joining
    • /
    • v.33 no.4
    • /
    • pp.63-67
    • /
    • 2015
  • Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing(ECT) is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. The New ECT sensor which can detect inner defects was developed regardless the condition of surface. This sensor is verified to do experiment which measure the loss of induced electromotive force. The loss of induced electromotive force was measured in 5.4% and this low frequency ECT device can detect internal defects at depth 20 mm.

Numerical Analysis of the Flow Characteristics in the Nano Fountain-Pen Using Membrane Pumping (박막펌핑을 이용한 Nano Fountain-Pen의 유동 특성에 관한 수치적 연구)

  • Lee, J.H.;Lee, Y.K.;Lee, S.H.;Kim, Hun-Mo;Kim, Youn-J.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.2 s.35
    • /
    • pp.19-24
    • /
    • 2006
  • Nano fountain-pen is a novel device to make the constant patterning in micro process using new designed probe. Fountain-pen nanolithography (FPN) is applied for constant supply of liquid in conjunction of patterns and surface variation in the micro process. In this study, nuo fountain-pen is composed with reservoir, micro channels, tip and scondary chamber. Instead of traditional method only using capillary force, liquid can be definitely and exactly injected with membrane pumping by the repulse force of tip. It is dfficult to perform experiments in the micro range so that we carried out a numerical analysis for internal flow, using a commercial code, FlUENT, The velocity, pressure and flow rate are obtained under laminar, unsteady, three-dimensional incompressible flow with no-slip condition, and results are graphically described.

Optimal Redundant Actuation of Parallel Manipulators with High Operational Stiffness (고강성 병렬형 로봇의 최적 여유 구동)

  • Kim, Sung-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.2
    • /
    • pp.181-189
    • /
    • 2000
  • This paper presents the optimal redundant actuation of parallel manipulators for complicated robotic applications such as cutting grinding drilling and digging that require a high degree of operational stiffness as well as the balance between force applicability and dexterity. First by taking into account the distribution(number and location) of active joints the statics and the operational stiffness of a redundant parallel manipulator are formulated and the effects of actuation redundancy are analyzed, Second for given task requirements including joint torque limit task force maximum allowable disturbance and maximum allowable deflection the task execution conditions of a redundant parallel manipulator are derived and the efficient testing formulas are provided. Third to achieve high operational stiffness while maintaining moderate dexterity the redundant actuation of a parallel manipulator is optimized which determines the optimal distribution of active joints and the optimal internal joint torque, Finally the simulation results for the optimal redundant actuation of a planar parallel manipulator are given.

  • PDF

Study of an analytical model for screw loosening mechanism of dental implants (치과용 임플란트의 풀림현상 규명을 위한 해석적 모델에 관한연구)

  • Seo, June-Woo;Kang, Kyoung-Tak;Chun, Heoung-Jae;Han, Chong-Hyeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.636-641
    • /
    • 2007
  • This research focuses on the development of an analytical model loosening mechanism of dental implant system. The model is utilized for predictions of preload values for internal and external types of implants. It identifies the effects of various parameters such as friction, geometric factors and mechanical properties on the loosening mechanism of the implant system. The results of analytical model are compared to those of the numerical method for validation.

  • PDF

Case_study of detecting loose part by acceleration signal (가속도 충격파형을 이용한 기기의 결함 위치분석 및 진단사례)

  • Yoo, Mu-Sang;Park, Seung-Do;Park, Hyeon-Cheol;Choi, Nak-Kyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.463-468
    • /
    • 2007
  • The abnormal sound of generator frame is analyzed by a acceleration signal. The spike-like time signal is major characteristics of impacting force. The distributional map of vibration level is one of visualization method. With map, noise source was easily detected. After de_assembly of generator, loose part of internal component is the source of impact force by mechanical movement of stator inherently. In contact condition of part with clearance, the level of impact signal is different at each revolution and impact signal did not happens periodically.

  • PDF

Analysis of Journal Locus in a Connecting Rod Bearing (엔진 연결봉 베어링의 운동 궤적 해석)

  • 조명래;정진영;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.183-189
    • /
    • 1997
  • This paper presents the motion of dynamically loaded journal in the connecting rod bearing of reciprocating internal combustion engine. Journal motions in engine bearings have been composed of two components, which was rotational and translational motion. Early study of journal locus in engine bearing had been performed on each motion. This paper has been considered two motions simultaneously. Reynolds equation including the squeeze effect has been analyzed using the ADI method, and real engine bearing and crankshaft system has been considered to calculate the cyclic external force. The equations of journal motion have been derived and then the numerical integration of these equations performed by 4th order Runge-Kutta method. This paper gives various journal orbits in connecting rod bearing depending on cyclic external forces, rotating speeds, and bearing parameters.

  • PDF

A Study on the Stroke Sensitive Shock Absorber (변위 감응형 충격흡수기에 관한 연구)

  • 박재우;주동우;김영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.85-90
    • /
    • 1997
  • In the stroke sensitive shock absorber, the oil path is formed along the internal cylinder surface to make the eli flow during piston's upper-lower reciprocation movement. With constraint to the conventional shock absorbers which show one dynamic characteristic curve, stroke sensitive shock absorber shows two kins of dynamic characteristic according to the stroke, In the study, analysis on the damping force generation process and dynamic behaviour characteristics of stroke sensitive shock absorber is performed, the valve characteristics being considered more precise information about design and damping performance analysis.

  • PDF

Analytical Technique on CFTA Girder Bridge Considering Construction Sequence (시공단계를 고려한 CFTA 거더교의 해석기법)

  • Park, Seung-Jae;Kim, Yong-Jae;Jeon, Jong-Su;Park, Myoung-Gyun;Park, Kyung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.167-168
    • /
    • 2009
  • The CFT structure is applied to newly developed CFTA girder because of improvement of ductility deformation, stiffness and internal force of structure owing to the interaction between steel tube and core concrete. CFTA girder is the structure which can reduce tensile stress due to external loads by using its arch shape and prestress force. This paper proposed constructional stage procedure and represented analytical technique considering constructional stage to investigate the safety against bridge collapse on construction and on operation.

  • PDF