• Title/Summary/Keyword: intermetallic material

Search Result 123, Processing Time 0.024 seconds

Manufacturing of Composite Solders by an In-situ Process (In-situ 공정에 의한 복합솔더 제조)

  • Hwang, Seong-Yong;Lee, Joo-Won;Lee, Zin-Hyoung
    • Journal of Korea Foundry Society
    • /
    • v.22 no.1
    • /
    • pp.35-41
    • /
    • 2002
  • To improve the reliability of solder joints, a composite solder which consists of solder matrix and intermetallic reinforcements was manufactured by a new method. The cast ingot of Sn-6.9Cu-2.9Ag alloy had primary Cu6Sn5 intermetallics in the form of dendrites. After rolling the ingot, the intermetallic dendrites were crushed into fine particles and distributed uniformly throughout the solder matrix. As the rolled strips became thinner, the average size of the crushed particles reached a critical size which did not decrease any more by further rolling. The critical size was nearly the same as the average width of intermetallic dendrite trunk. The crushed intermetallic particles did not melt and remained in solid state during reflow soldering due to their high meltingterm-perature. The coarsening and gravitational segregation of the particles were observed during reflow soldering.

Microstructural features of Laser Radiated GeSbTe Intermetallic Compounds (레이저 조사시킨 GeSbTe 금속간 화합물의 미세조직)

  • 박정우;김명룡
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.66-72
    • /
    • 1995
  • Microstructural features of laser irradiated bulk target which consists of GeSbTe interrmertallic compounds were examined by analytical microscopy. It was found that in addition to vaporization, a liquid expulsion due to laer-material interatction is main contribution of materials removal in the sintered GaSbTe targets, The morphological change is qualitatively discussed in the present article.

  • PDF

Raman Spectroscopy Analysis of Inter Metallic Dielectric Characteristics in IC Device (Silicon 기반 IC 디바이스에서의 층간 절연막 특성 분석 연구)

  • Kwon, Soon Hyeong;Pyo, Sung Gyu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.19-24
    • /
    • 2016
  • Along the few nano sizing dimensions of integrated circuit (IC) devices, acceptable interlayer material for design is inevitable. The interlayer which include dielectric, interconnect, barrier etc. needs to achieve not only electrical properties, but also mechanical properties for endure post manufacture process and prolonging life time. For developing intermetallic dielectric (IMD) the mechanical issues with post manufacturing processes were need to be solved. For analyzing specific structural problem and material properties Raman spectroscopy was performed for various researches in Si semiconductor based materials. As improve of the laser and charge-coupled device (CCD) technology the total effectiveness and reliability was enhanced. For thin film as IMD developed material could be analyzed by Raman spectroscopy, and diverse researches of developing method to analyze thin layer were comprehended. Also In-situ analysis of Raman spectroscopy is introduced for material forming research.

Characterization of the Sn-Ag-Cu and Sn-Cu Lead-free Solder by adding P (P의 함량에 따른 Sn-Ag-Cu 및 Sn-Cu 무연솔더의 특성평가)

  • 신영의;황성진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.6
    • /
    • pp.549-554
    • /
    • 2003
  • The purpose of this paper is to investigate the solder properties by the change of P mass percentage. Tension test, wetting balance test, spread test, and analysis of intermetallic compound after isothermal aging of Sn-2.5Ag-0.7Cu-0.005P, Sn-2.5Ag-0.7Cu-0.01P, Sn-2.5Ag-0.7Cu-0.02P, Sn-0.7Cu-0.005P were performed. Adding P in the solder alloys resulted in improvement of tensile strength, reduction of intermetallic compound growth, reduction of oxidization in fusible solders under wave soldering. After comparing solder alloy containing P with tin-lead eutectic solder alloy, P contained solders alloys showed much better solder properties than eutectic solder alloy. Furthermore, this solder alloy presented remarkable properties than any other lead-free solder alloy.

Synthesis of (Ti,Al)N Powder by the Direct Nitridation(II) (직접질화법에 의한 (Ti,Al)N계 복합질화물의 합성(II))

  • Cho, Young-Soo;Lee, Young-Ki;Sohn, Yong-Un;Park, Kyong-Ho;Kim, Seok-Yoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.3
    • /
    • pp.219-227
    • /
    • 1996
  • The purpose of this research is to develop the technology for the synthesis of (Ti,Al)N powder, which shows simultaneously the excellent properties of TiN and AlN, from the Ti-Al intermetallic compounds by the direct nitriding method. The effects of variables such as temperature, Ti-Al intermetallic compounds ($TiAl_3$, TiAl and $Ti_3Al$) were investigated by TG, XRD and SEM. The (Ti,Al)N powder can be easily synthesized from the intermetallic compounds by the direct nitriding method. Among the intermetallic compounds, the nitriding behavior increased with TiAl> $Ti_3Al$ > $TiAl_3$, as the difference of diffusion coefficient for nitrogen in each materials. The ternary nitride such as $Ti_2AlN$ and $Ti_3Al_2N_2$ can be synthesized by the direct nitriding method, although the ternary nitride coexist with TiN and AlN. The ternary nitrides are stable below $1400^{\circ}C$, but these are gradually decomposed into TiN and AlN above $1400^{\circ}C$.

  • PDF

Effect of Tool Shape and Insertion Depth on Joining Properties in Friction Stir Spot Welding of Aluminum Alloy/high-strength Steel Sheets (알루미늄 합금/고장력 강판 겹치기 마찰교반점용접에서 공구 형상과 삽입 깊이에 따른 접합 특성)

  • Su-Ho An;Young-Keun Jeong
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.37-42
    • /
    • 2024
  • Friction stir spot welding (FSSW) is a solid-state joining process and a rapidly growing dissimilar material welding technology for joining metallic alloys in the automotive industry. Welding tool shape and process conditions must be appropriately controlled to obtain high bonding characteristics. In this study, FSSW is performed on dissimilar materials AA5052-H32 aluminum alloy sheet and SPRC440 steel sheet, and the influence of the shape of joining tool and tool insertion depth during joining is investigated. A new intermetallic compound is produced at the aluminum and steel sheets joint. When the insertion depth of the tool is insufficient, the intermetallic compound between the two sheets did not form uniformly. As the insertion depth increased, the intermetallic compound layer become uniform and continuous. The joint specimen shows higher values of tensile shear load as the diameter and insertion depth of the tool increase. This shows that the uniform formation of the intermetallic compound strengthens the bonding force between the joining specimens and increases the tensile shear load.

WETTING PROPERTIES AND INTERFACIAL REACTIONS OF INDIUM SOLDER

  • Kim, Dae-Gon;Lee, Chang-Youl;Hong, Tae-Whan;Jung, Seung-Boo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.475-480
    • /
    • 2002
  • The reliability of the solder joint is affected by type and extent of the interfacial reaction between solder and substrates. Therefore, understanding of intermetallic compounds produced by soldering in electronic packaging is essential. In-based alloys have been favored bonding devices that demand low soldering temperatures. For photonic and fiber optics packaging, m-based solders have become increasingly attractive as a soldering material candidate due to its ductility. In the present work, the interfacial reactions between indium solder and bare Cu Substrate are investigated. For the identification of intermetallic compounds, both Scanning Electron Microscopy(SEM) and X-Ray Diffraction(XRD) were employed. Experimental results showed that the intermetallic compounds, such as Cu$_{11}$In$_{9}$ was observed for bare Cu substrate. Additionally, the growth rate of these intermetallic compounds was increased with the reaction temperature and time. We found that the growth of the intermetallic compound follows the parabolic law, which indicates that the growth is diffusion-controlled.d.

  • PDF

Analysis of Sliding Wear Properties for Arc-melted Intermetallic Compounds of Ni3Al, NiAl and TiAl (Arc melting으로 제조한 금속간화합물 Ni3Al, NiAl 및 TiAl의 미끄럼 마모특성 해석)

  • Lee, Han-Young;Kim, Tae-Jun;Cho, Yong-Jae
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.267-273
    • /
    • 2009
  • Three types of structural intermetallic compounds, $Ni_3Al$, NiAl and TiAl, having each single phase structure without pores were produced by arc-melting process. Their sliding wear properties were investigated against a hardened tool steel. It was shown that the wear of the intermetallic compounds was hardly occurred against the hardened tool steel. TiAl compound showed the best wear resistance among them. In this case, wear was preferentially occurred on the surface of the hardened tool steel of the mating material which has higher hardness. It could be found that the wear mode on intermetallics without pores by arc-melting process was different from that on its porous layer coated on steel by combustion synthesis.

Production of Te Electrode for Low Surge Vacuum Circuit Breaker (저surge 진공 차단기용 Te 전극 제조)

  • 김봉서;우병철;변우봉;이희웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.123-128
    • /
    • 1996
  • As electrode materials like as Cu-Pb, Cu-Bi, WC-Ag, W-Ag for vacuum circuit breaker have high chopping current or bad insulation-recovery characteristics, it can affect induction machinery like as transformer and motor. To produce low surge electrode material, it have been suggested Co-Ag-Te electrode which were infiltrated with Ag-Te intermetallic compound into sintered Co matrix in vacuum. In this paper, we would like to represent that production method and microstructure of Co-Ag-Te electrode material in each condition. The microstructure and characteristics of Ag-Te intermetallic compound and Co-(Ag-Te) electrode were investigated by using optical microscope, SEM, XRD, EPMA.

  • PDF

Behavior of Graphite and Formation of Intermetallic Compound Layer in Hot Dip Aluminizing of Cast Iron (주철 - 알루미늄 합금의 Hot Dip Aluminizing시 흑연 및 금속간화합물 층의 형성 거동)

  • Han, Kwang-Sic;Kang, Yong-Joo;Kang, Mun-Seok;Kang, Sung-Min;Kim, Jin-Su;Son, Kwang-Suk;Kim, Dong-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.31 no.2
    • /
    • pp.66-70
    • /
    • 2011
  • Hot dip aluminizing (HDA) is widely used in industry for improving corrosion resistance of material. The formation of intermetallic compound layers during the contact between dissimilar materials at high temperature is common phenomenon. Generally, intermetallic compound layers of $Fe_2Al_5$ and $FeAl_3$ are formed at the Al alloy and Fe substrate interface. In case of cast iron, high contact angle of graphite existed in the matrix inhibits the formation of intermetallic compound layer, which carry with it the disadvantage of a reduced reaction area and mechanical properties. In present work, the process for the removal of graphite existed on the surface of specimen has been investigated. And also HDA was proceeded at $800^{\circ}C$ for 3 minutes in aluminum alloy melt. The efficiency of graphite removal was increased with the reduction of particle size in sanding process. Graphite appears to be present both in the region of melting followed by re-solidification and in the intermetallic compound layer, which could be attributed to the fact that the surface of cast iron is melted down by the formation of low melting point phase with the diffusion of Al and Si to the cast iron. Intermetallic compound layer consisted of $Fe(Al,Si)_3$ and $Fe_2Al_5Si$, the layer formed at cast iron side contained lower amount of Si.