• 제목/요약/키워드: interfacial normal stress

검색결과 41건 처리시간 0.021초

열충격하 적층체의 열탄성 구배기능 계면영역을 고려한 동일선상 복수균열 해석 (Collinear cracks in a layered structure with a thermoelastically graded interfacial zone under thermal shock)

  • 최형집;진태은;이강용
    • 대한기계학회논문집A
    • /
    • 제22권4호
    • /
    • pp.779-789
    • /
    • 1998
  • In this paper, the thermal shock responses of collinear cracks in a layered medium are investigated based on the uncoupled, quasi-static plane thermoelasticity. The medium is modeled as a bonded structure composed of a surface layer and a semi-infinite substrate. Between these two dissimilar homogeneous constituents, a functionally graded interfacial zone exists with the nonhomogeneous features of continuously varying thermoelastic properties. Three cracks are assumed to be present in the layered medium, one in each one of the constituent materials, aligned collinearly normal to the nominal interfaces. A system of singular integral equations is solved, subjected to the forcing terms of equivalent transient thermal tractions acting on the locations of cracks via superposition. Main results presented are the transient thermal stress intensity factors to illustrate the parametric effects of various geometric and amterial combinations of the medium with the thermoelastically graded interfacial zone and the collinear cracks.

The rheology of two-dimensional systems

  • Fuller, G.;Yim, K.S.;Brooks, C.;Olson, D.;Frank, C.
    • Korea-Australia Rheology Journal
    • /
    • 제11권4호
    • /
    • pp.321-328
    • /
    • 1999
  • This paper discusses the rheology of complex interfaces comprised of amphiphilic materials that are susceptible to flow-induced orientation and deformation. The consequence of the coupling of the film micro-structure to flow leads to nonlinear rheology and surface fluid dynamics. Experimental methods designed to determine the mechanical rheological material functions of fluid-fluid interfaces as well as local, molecular and morphological responses are presented. These include a newly developed interfacial stress rheometer, flow ultraviolet dichroism, and Brewster-angle microscopy. These techniques are applied to a number of complex interfaces ranging from low molecular weight amphiphiles to polymer monolayers. Nonlinear flow phenomena ranging from two-dimensional nematic responses to highly elastic surface flows that manifest surface normal stress differences and elongational viscosities are described.

  • PDF

Effective width of steel-concrete composite beams under negative moments in service stages

  • Zhu, Li;Ma, Qi;Yan, Wu-Tong;Han, Bing;Liu, Wei
    • Steel and Composite Structures
    • /
    • 제38권4호
    • /
    • pp.415-430
    • /
    • 2021
  • The effective flange width was usually introduced into elementary beam theory to consider the shear lag effect in steel-concrete composite beams. Previous studies have primarily focused on the effective width under positive moments and elastic loading, whereas it is still not clear for negative moment cases in the normal service stages. To account for this problem, this paper proposed simplified formulas for the effective flange width and reinforcement stress of composite beams under negative moments in service stages. First, a 10-degree-of-freedom (DOF) fiber beam element considering the shear lag effect and interfacial slip effect was proposed, and a computational procedure was developed in the OpenSees software. The accuracy and applicability of the proposed model were verified through comparisons with experimental results. Second, a method was proposed for determining the effective width of composite beams under negative moments based on reinforcement stress. Employing the proposed model, the simplified formulas were proposed via numerical fitting for cases under uniform loading and centralized loading at the mid-span. Finally, based on the proposed formulas, a simplified calculation method for the reinforcement stress in service stages was established. Comparisons were made between the proposed formulas and design code. The results showed that the design code method greatly underestimated the contribution of concrete under negative moments, leading to notable overestimations in the reinforcement stress and crack width.

영구거푸집으로 활용한 FRP 판의 종류에 따른 콘크리트와의 부착응력에 관한 실험적 연구 (An Experimental Study of Bond Stress between Concrete and Various Kinds of FRP Plank used as a Permanent Formwork)

  • 박찬영;유승운
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제19권3호
    • /
    • pp.92-103
    • /
    • 2015
  • 최근 들어 FRP 판을 영구 거푸집 및 주요 인장보강재로 활용하기 위한 새로운 콘크리트 교량 바닥판 시스템 개발에 대한 연구가 활발히 진행되고 있다. 영구거푸집과 인장 보강재로의 병행이용은 기존의 콘크리트 바닥판 보다 공사비와 공사기간을 절감 할 수 있다. 본연구에서는 영구거푸집 및 주요인장재로 활용한 FRP 판의 종류에 따른 현장타설 콘크리트와 부착응력에 대해 실험을 수행하였다. 부착성능 평가를 실시하였고, 부착특성을 나타내는 중요한 변수중에 하나로서 부착 강도 및 부착면의 파괴 매커니즘 특성을 알 수 있는 계면 파괴에너지를 나타내었다. 일반콘크리트에서 계면 파괴에너지는 GF11의 경우 0.24kN/m이고, GF21의 경우에는 0.43kN/m, GF31과 CF11의 경우에는 각각 0.46kN/m와 0.44kN/m로 나타났고, RFCON에서는 GF12의 경우 0.52kN/m, GF22와 CF12에서는 각각 0.36kN/m와 0.51kN/m로 나타났다.

A new 3D interface element for three dimensional finite element analysis of FRP strengthened RC beams

  • Kohnehpooshi, O.;Noorzaei, J.;Jaafar, M.S.;Saifulnaz, M.R.R.
    • Interaction and multiscale mechanics
    • /
    • 제4권4호
    • /
    • pp.257-271
    • /
    • 2011
  • The analysis of interfacial stresses in structural component has been the subject of several investigations but it still requires more effort and studies. In this study a general three-dimensional interface element has been formulated for stress and displacement analyses in the interfacial area between two adjacent plate bending element and brick element. Interface element has 16 nodes with 5 degrees of freedom (DOF) in each node adjacent to plate bending element and 3 DOF in each node adjacent to brick element. The interface element has ability to transfer three translations from each side of interface element and two rotations in the side adjacent to the plate element. Stiffness matrix of this element was formulated and implemented in three-dimensional finite element code. Application of this element to the reinforced concrete (RC) beam strengthened with fiber reinforced polymer (FRP) including variation of deflection, slip between plate and concrete, normal and shear stresses distributions in FRP plates have been verified using experimental and numerical work of strengthened RC beams carried out by some researchers. The results show that this interface element is effective and can be used for structural component with these types of interface elements.

Colloidal Probe 원자현미경을 이용한 2차전지 전극용 폴리머 바인더의 응착 및 마찰 특성 평가 (Assessment of Adhesion and Frictional Properties of Polymer Binders for Secondary Cells using Colloidal Probe Atomic Force Microscope)

  • 웬당쾅;정구현
    • Tribology and Lubricants
    • /
    • 제35권3호
    • /
    • pp.169-175
    • /
    • 2019
  • In lithium-ion batteries (LIBs), the stress induced by the volume change of an electrode during charge-discharge processes may often cause the mechanical integrity of the electrode to degrade. Polymer binders with enhanced mechanical properties are preferred for improved mechanical integrity and cycling stability of the electrode. In addition, given that sliding and shearing between the polymer binder and components in the electrode may readily occur, frictional and adhesion characteristics of the polymer binder may play a critical role in the mechanical integrity of the electrode. In this study, frictional and adhesion characteristics of polyacrylonitrile (PAN) and polyvinylidene fluoride (PVDF) were investigated using a colloidal probe atomic force microscope. Friction loops were obtained under various normal forces ranging from 0 to 159 nN in air and electrolyte and then the interfacial shear strengths of PAN and PVDF in air were calculated to be $1.4{\pm}0.5$ and $1.3{\pm}0.3MPa$, respectively. The results show that in electrolyte, interfacial shear strength of PAN decreased slightly ($1.2{\pm}0.2MPa$), whereas that of PVDF decreased drastically ($0.06{\pm}0.01MPa$). Decreases in mechanical properties and adhesion in electrolyte may be responsible for the decrease in interfacial shear strength in electrolyte. The findings from this study may be helpful in developing polymer binders to improve the mechanical integrity of electrodes in LIBs.

PS/PP와 EPDM/PP 블렌드의 유변학적 거동에 미치는 계면의 영향 (Effects of Interface on the Rheological Behaviors of PS/PP and EPDM/PP Polymer Blends)

  • 이향목
    • 유변학
    • /
    • 제10권1호
    • /
    • pp.14-23
    • /
    • 1998
  • 비상용성 고분자 브렌드계인 PS/PP와 EPDM/PP의 유변학적 거동에 미치는 계면의 영향을 알아보았고 그실험 결과를 Park & Lee 모델과 비교하였다. PS/PP와 EPDM/PP 블 렌드계에서의 계면에 의한 전단응력과 법선 응력차에의 기여도는 $textsc{k}$와λ(1-$\mu$), 두 개의 변 수에 의해 잘설명되었다. 특히 계면의 탄성적인 효과와 관련있는 법선응력차 항이 전단 응 력 항보다 더 뚜렷하게 나타났다. 30PS/70PP 블렌드 조성에서는 블렌드의 유변학적 특성이 주로 연속상을 이루는 고분자의 의해 좌우된 반면에 50PS/50PP 블렌드조성에서는 계면에 의한 영향이 더두드러지게 나타났다. 이것은 50/50 블렌드 조성에서 계면의 넓이가 증가한 것과 관계 있다. 그러나 EPDM/PP 블렌드계에서 계면에 의한 응력 항들이 모두 PS/PP 블 렌드계의 그것보다 매우 큰 값을 가졌지만, 그 상대적인 비를 나타내는 $textsc{k}$값은 작았다. 이것 은 블렌드를 구성하고 있는 순수한 성분의 법선응력차 값의 차이가 크기 때문이다. 또한 PS/PP 블렌드계에 대한 동적 계면장력을 Park & Lee 모델을 이용하여 예측해 보았다.

  • PDF

Constitutive Equations for Dilute Bubble Suspensions and Rheological Behavior in Simple Shear and Uniaxial Elongational Flow Fields

  • Seo Dongjin;Youn Jae Ryoun
    • Fibers and Polymers
    • /
    • 제6권2호
    • /
    • pp.131-138
    • /
    • 2005
  • A theoretical model is proposed in order to investigate rheological behavior of bubble suspension with large deformation. Theoretical constitutive equations for dilute bubble suspensions are derived by applying a deformation theory of ellipsoidal droplet [1] to a phenomenological suspension theory [2]. The rate of deformation tensor within the bubble and the time evolution of interface tensor are predicted by applying the proposed constitutive equations, which have two free fitting parameters. The transient and steady rheological properties of dilute bubble suspensions are studied for several capillary numbers (Ca) under simple shear flow and uniaxial elongational flow fields. The retraction force of the bubble caused by the interfacial tension increases as bubbles undergo deformation. The transient and steady relative viscosity decreases as Ca increases. The normal stress difference (NSD) under the simple shear has the largest value when Ca is around 1 and the ratio Of the first NSD to the second NSD has the value of 3/4 for large Ca but 2 for small Ca. In the uniaxial elongational flow, the elongational viscosity is three times as large as the shear viscosity like the Newtonian fluid.

Analysis and modeling of hyperstatic RC beam bonded by composite plate symmetrically loaded and supported

  • Abderezak, Rabahi;Daouadji, Tahar Hassaine;Rabia, Benferhat
    • Steel and Composite Structures
    • /
    • 제45권4호
    • /
    • pp.591-603
    • /
    • 2022
  • The flexural strengthening of reinforced concrete beams by external bonding of composite materials has proved to be an efficient and practical technique. This paper presents a study on the flexural performance of reinforced concrete continuous beams with three spans (one span and two cantilevered) strengthened by bonding carbon fiber fabric (CFRP). The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened continuous beam, i.e., the continuous concrete beam, the FRP plate and the adhesive layer. The adherend shear deformations have been included in the present theoretical analyses by assuming a linear shear stress through the thickness of the adherends. Remarkable effect of shear deformations of adherends has been noted in the results. The theoretical predictions are compared with other existing solutions that shows good agreement, and It shows the effectiveness of CFRP strips in enhancing shear capacity of continuous beam. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite beam.

음향방출법을 이용한 Glass Fiber/PET 복합재료의 손상평가 (Damage Evaluation of Glass Fiber/PET Composite Using Acoustic Emission Method)

  • 김상태;김덕윤
    • Composites Research
    • /
    • 제14권1호
    • /
    • pp.1-7
    • /
    • 2001
  • 본 연구에서는 유리 섬유 강화 열가소성 복합재료의 손상평가를 음향방출법을 이용하여 관찰하였다. 시편은 PET와 유리섬유를 7겹으로 적층시켜 만들었으며 두께는 1.7mm이다. 노치 시험편과 풍격 시험편을 제작하여 단순인장 시험과 부하-제하 시험을 수행하였다. AE 신호의 파라미터와 파괴모드간의 관계를 찾아내기 위해 충격 에너지와 노치비의 함수로 AE신호를 측정하였다. 실험견과 모재의 미소균열과 성장 때문에 저진폭 AE 신호가 나타났고, 중진폭 신호는 섬유와 모재간의 층간분리와 계면분리에 대응됐다. 또한 90dB의 고진폭 영역에서는 유리섬유의 파단과 대응되었다 층간분리와 모재의 균열과 음력집중의 영향 때문에 노치비와 충격 에너지가 증가할수록 인장강도는 감소했다. 손상영역의 비율에 따라 AE 신호는 넓은 영역의 주파수가 나타날 뿐만 아니라 신호도 증가하였다.

  • PDF