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in Simple Shear and Uniaxial Elongational Flow Fields
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Abstract: A theoretical model is proposed in order to investigate rheological behavior of bubble suspension with large defor-
mation. Theoretical constitutive equations for dilute bubble suspensions are derived by applying a deformation theory of
ellipsoidal droplet [1] to a phenomenological suspension theory [2]. The rate of deformation tensor within the bubble and the
time evolution of interface tensor are predicted by applying the proposed constitutive equations, which have two free fitting
parameters. The transient and steady rheological properties of dilute bubble suspensions are studied for several capillary
numbers (Ca) under simple shear flow and uniaxial elongational flow fields. The retraction force of the bubble caused by the
interfacial tension increases as bubbles undergo deformation. The transient and steady relative viscosity decreases as Ca
increases. The normal stress difference (NSD) under the simple shear has the largest value when Ca is around 1 and the ratio
of the first NSD to the second NSD has the value of 3/4 for large Ca but 2 for small Ca. In the uniaxial elongational flow, the
elongational viscosity is three times as large as the shear viscosity like the Newtonian fluid.
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Introduction

Foams, which are bubble suspensions, are widely used in
industrial applications because there are many advantages of
foamed materials, including low cost, light weight, enhanced
thermal and electrical insulation, and high impact strength [3].
For example, polyurethane foams have been studied for
various practical applications [4-10]. The bubble suspension
that consists of gaseous bubbles in a Newtonian fluid exhibits
complex rheological behaviors, such as elastic effects and
shear- and time-dependent viscosity [11-14]. Deformation of
bubbles in the suspension and rheological behaviors of the
suspension can be characterized by two dimensionless para-
meters: the capillary number (Ca) and the volume fraction
of bubbles (@). The capillary number is defined as

Ca = HGR
r

where u is the viscosity of the matrix, G is the shear rate, R
is the radius of the undeformed spherical bubble, and I is the
interfacial tension.

Frankel and Acrivos [15] derived a constitutive equation
for a dilute emulsion by considering the creeping motion of
a droplet in a uniform and time-dependent shearing flow. For
the case of small deformation, they obtained the differential
equation with the Jaumann derivative, which could be recasted
in the form of a Jeffreys model [12]. According to their calcula-
tion results, the relative viscosity was represented as bwlow.
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This equation reveals that the predictions by both Taylor and
Mackenzie are the two limiting cases for small and large Ca,
respectively. Schowalter et al. [16] presented for small Ca
and small bubble deformation in a simple shear flow that the
normalized first and the second normal stress differences
(NSD) were 32¢Ca/5 and —20¢Ca/7, respectively.

Some researchers performed theoretical investigations by
considering a liquid drop as an ellipsoid. Maffettone and
Minale [1] presented a phenomenological model for the droplet
deformation in a fluid under a flow field with a uniform velocity
gradient, but the model deviates from experimental results at
large Ca and high viscosity ratios. Jackson and Tucker [17]
combined the Eshelby model with the slender-body model to
predict the transient shape evolution of an ellipsoidal Newtonian
droplet with interfacial tension in a Newtonian fluid. Yu and
Bousmina [18] also proposed an ellipsoidal model for droplet
deformation in emulsions composed of two Newtonian fluids.
These two models match the experimental results accurately
under many types of flow fields.

Besides the theoretical approaches, there are some numerical
and experimental studies to understand the rheological behavior
of bubble suspensions. Due to the almost zero viscosity ratio
of the gaseous bubble to the matrix, it is difficult to simulate
the behavior of a bubble in a suspending fluid subject to a
certain flow. Manga and Loewenberg [19] calculated the
shear viscosity of a suspension of highly deformable bubbles
dispersed within a Newtonian fluid. Boundary integral numerical
techniques were employed to solve the bubble deformation
at large Ca. Cristini et al. [20] carried out experiments and
numerical simulations on the droplet deformation with the
viscosity ratio of 0.1 at large Ca. They reported that the drop
widening increased with increasing Ca and occurred when
the viscosity ratio was less than unity. Cristini et al. [21]
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studied the deformation and breakup of droplets under shear
flow by using boundary integral simulation and experiments.
They suggested accurate breakup criteria for a range of
viscosity ratios. Renardy et al. [22] calculated droplet deforma-
tion under shear when a surfactant was present and the
viscosity ratio was 0.05. They used the volume of fluid (VOF)
algorithm to track interfaces with the structured Cartesian
grid. Navier-Stokes equations were solved by a projection
method and interface tension was modeled by a continuum
method. They focused on the effects of surfactant concentration
on the drop deformation and did not investigate the capillary
number effects.

In this study, theoretical constitutive equations, which include
the time evolution of bubble shape and orientation, are proposed
to predict the rheological behavior of bubble suspensions for
large bubble deformation at wide range of capillary numbers
by applying a deformation theory of ellipsoidal droplet that
was suggested by Maffettone and Minale [1] to a phenom-
enological suspension theory [2]. Studies on combining droplet
deformation theory with suspension theory were carried out
by some researchers [23]. In their studies, however, droplet
relaxation by an interfacial tension and droplet deformation
by an external flow were dealt with separately and viscosity
difference between the matrix and the droplets was not
considered. The relationship between the relative viscosity
of the bubble suspension and the coefficients of Maffettone
and Minale’s model is derived in this study and used to
overcome the mismatch between theoretical predictions and
experimental measurements.

Theoretical Derivétion of a Constitutive Equation

General Droplet Suspensmn Theory .

Based on the general suspension theory, two 1mm1501b1e
and incompressible Newtonian fluids are considered. The
suspension creates a complex flow, including the matrix
(continuous phase) and the droplets (dlscontmuous phase) of
various sizes and shapes. Following Landau and Lifshitz [24],
the volume-averaged extra stress for the suspension of incom-
pressible Newtonian fluids w1th ZET0 1nterfac1a1 tension can
be represented as :

7 = 2B+ 24~ p)E 3)

where E is the volume-averaged rate-of-deformation tensor
and the superscript * denotes the droplet phase. The volume
used for averaging should be larger than the size of the
microstructure, but small enough to cover the variation of
structure. According to Doi aqd Ohta [2], the extra stress due
to the interfacial tension can be considered as below.

_I

T =-Tq “)

where q is called as the interface tensor defined as equation

-
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Here V is the total system volume including a matrix and
droplets, i is the unit normal vector at the interface, and I is
the unit tensor. The interface tensor can be related to the area
tensor, which is proposed by Wetzel and Tucker [25].

q= A—§QI (6)

Here A is the area tensor and @ is the invariant, ##(A), which
denotes the total interfacial area per unit volume.

The volume-averaged extra stress for dispersion of an incom-
pressible Newtonian fluid can be expressed by considering
the interfacial tension as follows.

T=2uE+24(4' - E -Tq )
Equation (7) can be changed into a dimensionless form.
%= 2F 42002 DE"- 224 ®)
Cd

where A is the viscosity ratio (= x*/u). Cd is the dynamic
capillary number that denotes the ratio of the viscous
dissipation energy to the interfacial energy, and is defined as

Ccd = 3412 ©)
o

where 7 is the rate of deformation (= J2E:E), which
becomes the shear rate G for a simple shear flow. If all
droplets are assumed to be spherical and have the same radii,
the radius of the spherical droplet (R) is equivalent with 3¢/
Q so that Cd equals to Ca. The dimensionless variables are
defined as follows.

i=t E=%, §=1 (10)
Ky ¥ Q
In addition, the relaxation time of the droplet is defined.

=349 _ cqs;
T To Cdly (1)

The relaxation time and the dynamic capillary number are
inversely proportional to the interfacial area and will be
changing continuously during droplet deformation. The expres-
sions of the volume-averaged rate of deformation tensor
within the droplets (E*), the evolution of the interface
tensor (q), and the interfacial areca per unit volume (Q)
under any flow field must be identified in order to evaluate
equation (8).

* The volume-averaged velocity gradient tensor within the
droplets, in general, depends on the geometry of the droplets
and the viscosity ratio 4. For an ellipsoidal droplet without
interfacial tension, Wetzel and Tucker [25] provided a complete
solution of velocity field by using the Eshelby tensor. Their



Constitutive Equations for Dilute Bubble Suspensions

solution which is equal to the result of Frankel and Acrivos [15]
is expressed as below for a dilute spherlcal droplet with small
deformation.

24+3

For concentrated d1sper51on of nearly spherical droplets without
interfacial tension [26], E” can be expressed by the following
equation

"L 5 E
21— A+3+24

If the interfacial tension is not negligible, E’ is a function
of not only the applied flow field but also the interfacial
tension. Jackson and Tucker [17] and Yu and Bousmina [18]
proposed equations of the velocity gradient tensor within an
ellipsoidal droplet. The equations gave good predictions for
wide range of the viscosity ratio but it is difficult for the
equations to be applied to the bubble suspension. According
to Maffettone and Minale [1], the volume-averaged velocity
gradient tensor within an ellipsoidal droplet is proposed as

RNy 14

where G is called as the shape tensor [17]. The shape tensor
can be approximated by the area tensor (see Appendix A)
and equation (14) can be changed to

~y ~  3f .

L *W+fE+— 15

LE+74 (15)

where L is the dimensionless velocity gradient tensor (= L/%)
and W is the dimensionless vorticity tensor (= W/%). f; and
1> are functions of the viscosity ratio.

E (12)

(13)

L’ —W+f2

_ 40(A+ 1)

fi = (24 +3)(194+ 16) (16)
5

fz‘(u+3) a7

If equation (15) is substituted into equation (8), the dimen-
sionless volume-averaged extra stress is obtained.

=201+ ¢(A- D ]E— 3¢’“ (18)
K= 1-2(A-1)f, (19)

Doi and Ohta [2] considered the equal viscosity mixtures

and « is unity in their equations. If 1 is not equal to unity, «

is not equal to unity. x represents the effect of viscosity
difference on interfacial tension. Peters et al. [27] also suggested
that the stress related to the viscosity difference was not
purely viscous and proposed that f; = 1/(24+3) for dilute
spherical droplet suspensions. According to Graebling ef
al. [28], the relaxation time of a suspension of two Newtonian
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fluids is 7/f; for a nearly spherical droplet. The relaxation
time corresponds to the time required for a deformed droplet
to recover its spherical shape.

Time- evolution of the area tensor for an incompressible
homogeneous fluid without interfacial tension under a velocity
field L can be expressed in a dimensionless form with a
simple closure approximation (see Appendix B).

DA _ i7 X_A.f+2(i: A)A-2IE (20)

Dt 5
where A is the normalized or dimensionless area tensor
(=A/Q), 1 is the dimensionless time (=¢y), II; is the
second invariant of area tensor, and the superscript 7 means
transpose. If equation (6) is substituted into equation (20),
the evolution equation of the interface tensor is obtained as
follows.

3(11 "§-4q- L——(5+3IIA)E
+2(I::(1)(Q+%I) @1

For a suspension with interfacial tension and non—equal
viscosity, it is proposed that L should be replaced with L.
It is not necessary to consider the flow effect and the inter-
facial tension effect separately because L contains these two
effects. The following equation is obtained by combining
equations (15) and (21).

o 2(5 +3113 )(

,E ~fH(E"-q+§-E)

~3]"1)

f‘q q+2(sz q+%q q)(q+;1) (22)

where q is the Jaumann derivative defined as below.
4=q-W-4+4- W (23)

If the same analogy is applied to the total interfacial area per
unit volume, Q is evolved as follows.

* 3

DFg =-Eq =—szrq—T—gq:q (24)

According to Lee and Park [29], there are three mech-
anisms of droplet relaxation: coalescence, shape relaxation,
and break-up by interfacial tension. If equations (22) and
(24) are compared with equations in the literature, the dimen-
sionless constants of three modes for droplet relaxation are
given: the total relaxation z; = 2¢f,/3, the size relaxation 7, =
0, and the breakup and shape relaxation 7, = 2/3. It is known
that 7,~0 and 7,~1 when the shape relaxation dominates
over the other relaxations in a dilute system. In this study,
equations are proposed based on the model of Maffettone
and Minale {1], who considered an ellipsoidal droplet in a
viscous flow without breakup and coalescence, so that the
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shape relaxation dominates. In the Lee and Park model, £ is
unity despite the consideration of viscosity difference between
the droplets and matrices. They simply combined the interfacial
tension and the flow effects, but it must be corrected if there
is the viscosity difference between the droplets and matrices.
When equation (9) is substituted into equation (24), the evolu-
tion equation of the dynamic capillary number is obtained as
follows.

D(C ~ o~
Lmﬂ = £,CdE:q+3/,4:4 (25)
Bubble Suspension

The liquid droplet suspension theories can be directly
applied to bubble suspension where 4 is zero. Equation (18)
can be represented as

t=2n,F —%gch (26)
Ny =1-¢f (27)

where 7, is the relative viscosity of the bubble suspension
when the interfacial tension is negligible. By substituting
equation (17) into equation (27), the relative viscosity is
evaluated as follows.

-3
Mo =1-3¢ (28)

It is the same value as the result calculated by Mackenzie [30]
for a dilute spherical droplet with small deformation.

If equations (22) and (26) are combined and q is
eliminated in the combined equation by assuming that
bubbles are nearly spherical (Cd— Ca, II;—>-1/3, and
0— ), the following equation is obtained.

S - S5Cas
:2( += K‘)E+2 —FE 29
Tt 5r ¢ Noer 29)

The above equation has the same form as the linear
viscoelastic Jeffreys model. According to the equation, the
relaxation time of bubble suspensions is 57/8f; (=37/4),
which is given as 67/5 in the similar equation derived by
Llewellin ef al. [12]. As mentioned before, Graebling et al. [28]
suggested that the relaxation time of the suspension of two
Newtonian fluid is z/f; for nearly spherical droplet. This
difference may result from the closure approximation and
approximate conversion of the shape tensor into the area
tensor. When Ca << 1, the above equation is simplified to

5
2h
where 774 is the relative viscosity of the bubble suspension at

very small Ca. The relative viscosity is evaluated by applying
equations (16) and (17) as follows.

2= 2.+ Zpn)B = i (30)

np=1+¢ | 31)
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It is the same result as the relationship derived by Taylor [31]
for a dilute spherical droplet with small deformation.

The coefficients derived by Maffettone and Minale [1] are
valid if a bubble suspension is dilute enough for coalescence
to be prohibited. Even if the coefficients are obtained in the
case of small deformation of bubbles, the three equations
can be applied to the case of large deformation of bubbles
because the model of Maffettone and Minale can predict
droplet deformation if the droplet remains as an ellipsoid.
But if the coefficient of Maffettone and Minale are invalid,
the coefficients can be calculated by using the relative
viscosity of bubble suspensions as follows.

1_7701
= o 32
/i - 1) (32)
l_na
=1z 33
f2 p (33)
x= 18" e (34)
77,3*1

These equations are obtained from the equations (19),
(27), and (30). Here 7, and 74 are the relative viscosity of
the bubble suspension at large Ca and small Ca. Equations
(22), (25), and (26) with these three coefficients are the final
constitutive equations for the bubble suspension to be employed
for theoretical prediction of the bubble suspension.

Results and Discussion

Simple Shear Flow

The constitutive equations proposed for bubble suspensions,
equations (22), (25), and (26), were solved simultaneously
under a simple shear flow for several capillary numbers. An
Euler explicit method was used to obtain the exact solution
of the differential equations. The interface tensor is set to be
zero as an initial value because it is assumed that the bubble
is spherical. Relative viscosities, 77, and 775, are given as (1 -
5¢/3) and (1 + @), respectively.

Figure 1 shows the transient variation of the relative viscosity
for bubble suspensions with ¢ = 0.0625 under a simple shear
flow for several different capillary numbers. The solid lines
are the results from the proposed model calculated by the
Euler explicit method. The relative viscosity of every bubble
suspension is less than unity initially, and then it increases as
the bubble deforms and reaches its maximum value. Initially
the relative viscosity has the value of (1 — 5¢/3) because the
bubble deforms so slightly that the surface tension effects on
the stress are negligible. As the bubble deforms further, the
surface tension effects start to appear so that the viscosity of
the suspension increases and reaches a certain plateau value,
e.g., (1 + @) if Ca is less than unity. When Ca << 1, the
surface tension effects caused by the bubble anisotropy are
so large and fast that the relative viscosity of the bubble
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Figure 1. Transient variation of the relative viscosity for the bubble
suspension with ¢ = 0.0625 under a simple shear flow; upper and
lower dashed lines are the analytic results for a dilute bubble
suspension and solid lines are the results from the proposed model.
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Figure 2. Relative viscosity with respect to the capillary number
when bubbles are slightly deformed and ¢ = 0.0625.

suspension is always greater than unity.

Figure 2 plots the relative viscosity with respect to Ca
when bubbles are slightly deformed. The volume fraction of
the bubble suspension is 0.0625. The relative viscosity
predicted by the proposed theoretical model is compared
with the results of the Frankel and Acrivos model [15] and
the experimental results by Llewllin ez al. [12]. When bubbles
are nearly spherical and suspensions are dilute, the relative
viscosity of bubble suspensions can be obtained from the
constitutive equations as follows:

gt n5Cal8f,)’
1+(5Cal8f)

=

_ 14(3/49Ca)’ + ¢(1 = (15/16))
1+((3/4)Ca)’

(35)

Equation (35) is different from the relative viscosity calculated
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from the Frankel and Acrivos model given by equation (2).
The relative viscosity of predicted by equation (35) is larger
than that predicted by the Frankel and Acrovos model for
capillary numbers ranging from 0.1 to 10. As shown in
equation (29), the relaxation time of the proposed theoretical
model differs from the other theoretical models that were
derived mathematically by solving deformation of droplets
m a certain flow. The difference in the relaxation time may
come from the closure approximation and the approximate
conversion of a shape tensor into an area tensor. Anyhow the
relative viscosity of the bubble suspension decreases as the
capillary number increases. The critical capillary number
(Ca,,;), where bubble breakup occurs, is known to be greater
than 1000 in a simple shear flow [32]. Since the change in
the capillary number can be considered as that in the shear
rate, the relative viscosity of the bubble suspension, in general,
shows a shear thinning behavior.

The measured relative viscosity of the bubble suspension
is usually larger than the value predicted by the theoretical
models when Ca << 1 as shown in Figure 2, but the experi-
mental data match the theoretical prediction (1 — 5¢/3) when
Ca >> 1 [12-14,33]. One reason may be the hydrodynamic
interaction between the bubbles even though they are not in
direct contact each other. The flow field between bubbles
becomes more complicated in the multiple bubble suspension
than in the single bubble suspension. Another reason may
come from rising of bubbles due to the buoyancy effect.
Llewllin er al. [12] used a parallel plate viscometer to measure
the relative viscosity. During the measurement it was observed
that more bubbles were present below the upper plate than
above the lower plate. When Ca << 1 the viscosity increase
can be predicted by a simple treatment of the proposed
model. If 75= 1.2 (= 1 + 3.2¢) is substituted into the proposed
theoretical model by using the relationships that are given in
equations (32), (33), and (34), the model predicts the experi-
mental results of Llewllin ef a/.[12] as shown in Figure 2.
Some deviations at small capillary numbers may come from
the polydispersity of the bubble sizes in their experiments.

The first and second normal stress differences (NSD) were
obtained by using the phenomenological model proposed in
this study. When bubbles are nearly spherical and suspensions
are dilute, the normalized first and second NSD of bubble
suspensions can be obtained from the constitutive equations
as follows.

i = 2(5Cal8f)(rp=14) _
1+(5Ca/8f,)’

_ (5Cal$f)(np=112) _
1+(5Ca/8f,)

4¢Ca
1+((3/4)Ca)

2¢Ca
1+((3/4)Ca)’

(36)

(37

For small Ca and small deformation, Schowalter et al. [16]
computed §, and i, as 32¢Ca/5 and —204Ca/7, respectively.
Figure 3 shows the transient variations of the first normal
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stress difference for bubble suspensions with ¢ = 0.0625 under
the simple shear flow. The first NSD increases with the applied
strain and reaches a certain maximum value. The first NSD
has the largest value when the capillary number is around 1.
As shown in the small figure inside Figure 3, the smaller the
capillary number is the larger the first NSD at very small
strain. The normal stress itself is very large but the interfacial
tension makes the bubble shape be spherical so that the
difference between the normal stresses is not large when Ca
<< 1. When Ca >> 1, the bubble deformation is very large and
the interfacial tension is so small that the normal stress itself
is not large.

Figure 4 shows the transient variations of the ratio of the
first NSD to the second NSD for bubble suspensions with ¢
= 0.0625 under a simple shear flow. The ratio is —3/4 at the
small strain and increases as the applied strain does. For
large Ca and small deformation, the ratio is calculated from

25
Ca=100 | = em—mmmmT T
v Ca=10 P el
204 | ====—=— Ca=1 /”
————- Ca=01
—_—— - Ca=001
e
15 4 /
. /
~ /
1> /

Shear strain (G*time)
Figure 3. Transient variation of the first normal stress difference

for the bubble suspension with ¢ = 0.0625 under a simple shear
flow.
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Figure 4. Transient variation of the ratio of the first normal stress
difference to second normal stress difference for the bubble
suspension with ¢ = 0.0625 under a simple shear flow.
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Figure 5. Transient variation of the normal stress difference for the
bubble suspension with ¢ = 0.0625 under a uniaxial elongational
flow. U is the elongational rate.

our model as
vy = =2/(1+f;) = -3/4 (38)

It is peculiar that the second NSD is larger than the first
NSD when Ca >> 1, which has not been reported yet and
should be identified experimentally in the future. When Ca
<< 1, the ratio reaches —2 at the small strain, which can be
obtained from the equations (36) and (37).

Uniaxial Elongational Flow

Using the proposed phenomenological model, the normal
stress difference is calculated for bubble suspensions with ¢
= 0.0625 under the uniaxial elongational flow as shown in
Figure 5. The velocity gradient tensor is given as

U o 0 - -
L=lo _u2 o (39)
0 0 -U2 ‘

where U is the elongational rate. The normal stress difference
can be calculated for the constitutive equations by using the
assumption that bubbles are nearly spherical and suspensions
are dilute, '

T, -, = 37 ' (40)

Equation (40) is normalized by the shear rate that is J3U.
The elongational viscosity of the bubble suspension is three
times the shear viscosity like the Newtonian fluid.

Conclusions
A phenomenological constitutive equation that includes

the time evolution of bubble size and orientation was proposed
by applying the general suspension theory. The theory of
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Maffettone and Minale was applied to the model in order to
evaluate the rate of deformation tensor within the droplet and
the time evolution of the interface tensor and the dynamic
capillary number. The bubble deformation predicted by the
proposed model was in good agreement with experimental
results. In simple shear flow, the proposed theoretical model
was employed to predict that the dynamic capillary number
decreases as the bubbles deforms. The relative viscosity is
less than unity in the case of very small bubble deformation
and then increases as the bubbles deform. The relative viscosity
decreases as the capillary number increases and its asymptotic
values when Ca >> 1 and Ca << 1 agree well with the values
predicted by other theoretical models. The relative viscosity
predicted by the proposed model is larger than that predicted
by the Frankel and Acrivos model for capillary numbers
ranging from 0.1 to 10. The normal stress differences calculated
by the model were different from those predicted by Schowalter
et al. for small bubble deformation. The first NSD has the
largest value when the capillary number is around 1 and the
ratio of the first NSD to the second NSD has the value of 3/4
for large Ca but 2 for small Ca. In a uniaxial flow, the
elongational viscosity is three times the shear viscosity like
the Newtonian fluid.
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Appendix A: Relationship Between Area
Tensor and Shape Tensor

For an ellipsoidal droplet, the shape and orientation can be
described by a shape tensor G. Every point on the surface of
the droplet satisfies
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x-G-x=1 : (A1)

where x is a position vector originating at the centroid of the
droplet [34]. If the coordinate axes are set to be aligned with
the principal axes of the droplet, a shape tensor (G) and an
area tensor (A) are represented as

17/ 0 0
G=11 12 o (A2)
0 0 1/

whert 7, r,, and r; are the principal axis lengths (r; 2 7, 2 1))
and

4, 0 0 _
A=10 4, 0 (A3)
0 0 4,

where 4| > 4, > A;. According to Wetzel and Tucker [25],
the principal axis lengths and the diagonal components of an
area tensor have the approximate relationship as follows:

(b ey
ry M ry M,
where « is 0.5977. Therefore we can obtain

~ ~2a

G=A (AS)

where the tilde denotes the normalized variables. For
mathematical convenience, this is further simplified as

G~A (A6)

If a droplet is nearly spherical, equation (A6) is a good
approximation.

Appendix B: Closure Approximation

In order to calculate the evolution equation of the second
order area tensor, there is a need to evaluate the fourth order
area tensor. There are many methods for closure approxima-
tion, such as quadratic closure, hybrid closure, and orthogonal
closure. Especially Wetzel and Tucker [25] proposed RE
closure that gives quite a good prediction for most of flow
types but is impossible to manipulate mathematically. But in

Dongjin Seo and Jae Ryoun Youn

this study, a simple closure is derived. The fourth order area
tensor is defined as

Ay = jn A (B1)

and its dlmenswnless form is represented as ;l,jkl (= A /Q).
The fourth order-area tensor should obey the following
conditions:

/Zijkl = ;ljikl = ;L‘jlk = .. (B2)

Ay = Ay (B3)

So a closure approximation is proposed as

Ajirg = a(6,;0) + B(Oy 6y + 6;0) + 7/:11‘jf~1k1 (B4)

In order to satisfy equations (B2) and (B3), the coefficients «,
S, vshould be

1~ = 2

= = (AppApn—1) = =113 BS

a 15( )= T ‘ (BS)

f=—a (B6)
2

Y= 1 (B7)

Here 11} is the second invariant of the area tensor A g
Therefore the final closure is given

2 ~ ~
EHA[ 1= ( O+ ‘/51‘1()} +AijAu (B8)
The above equation is now called as the simple closure. If

the equation is multiplied by the velocity gradient tensor, it
becomes

Ajigr =

Ly = =211 B+ Lyl (B9)

If a droplet shape is spherical, /75 is —1/3. It is the same
equation as that proposed by Peters et al. [27]. But if the
droplet is deformed significantly and its shape becomes a
long circular cylinder, /15 is —1/4, so it gives different value
from that given by Peters et al. If the shape of the droplet is
lamellar as reported by Cristini et al. [20] in the case of
droplet deformation under a strong shear flow, 175 is zero so
that the simple closure becomes the quadratic closure.



