Browse > Article

Constitutive Equations for Dilute Bubble Suspensions and Rheological Behavior in Simple Shear and Uniaxial Elongational Flow Fields  

Seo Dongjin (School of Materials Science and Engineering, Seoul National University)
Youn Jae Ryoun (School of Materials Science and Engineering, Seoul National University)
Publication Information
Fibers and Polymers / v.6, no.2, 2005 , pp. 131-138 More about this Journal
Abstract
A theoretical model is proposed in order to investigate rheological behavior of bubble suspension with large deformation. Theoretical constitutive equations for dilute bubble suspensions are derived by applying a deformation theory of ellipsoidal droplet [1] to a phenomenological suspension theory [2]. The rate of deformation tensor within the bubble and the time evolution of interface tensor are predicted by applying the proposed constitutive equations, which have two free fitting parameters. The transient and steady rheological properties of dilute bubble suspensions are studied for several capillary numbers (Ca) under simple shear flow and uniaxial elongational flow fields. The retraction force of the bubble caused by the interfacial tension increases as bubbles undergo deformation. The transient and steady relative viscosity decreases as Ca increases. The normal stress difference (NSD) under the simple shear has the largest value when Ca is around 1 and the ratio Of the first NSD to the second NSD has the value of 3/4 for large Ca but 2 for small Ca. In the uniaxial elongational flow, the elongational viscosity is three times as large as the shear viscosity like the Newtonian fluid.
Keywords
Dilute bubble suspension; Bubble deformation; Interface tensor; Capillary number;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 P. L. Maffettone and M. Minale, J. Non-Newt. Fluid Mech., 78, 227.(1998)   DOI   ScienceOn
2 M. Doi and T. Ohta, Int. J. Chem. Phy., 95(2), 1242 (1991)   DOI
3 H. Park and J. R. Youn, Journal of Engineering for Industry, ASME Transactions, 114(3),323 (1992)
4 Y. M. Lim, D. Seo, and J. R. Youn, Korea-Australia Rheology Jounal, 16(1),47 (2004)
5 W. R. Schowalter, C. E. Chaffey, and H. Brenner, J. Colloid Interface Sci., 26, 152 (1968)   DOI   ScienceOn
6 Y. Y. Renardy, M. Renardy, and V. Cristini, European Journal of Mechanics B/Fluids, 21, 49 (2002)   DOI   ScienceOn
7 N. A. Frankel and A. Acrivos, Journal of Fluid Mechanics, 44, 65 (1970)   DOI
8 D. Graebling, R. Muller, and J. F. Palierne, Macromolecules, 26, 320 (1993)   DOI
9 E. D. Wetzel and C. L. Tucker, Journal of Fluid Meehanics, 426, 199 (2001)   DOI   ScienceOn
10 W. H. Lee, S. W. Lee, T. J. Kang, K. Chung, and J. R. Youn, Fibers and Polymers, 3(4), 159 (2002)   DOI   ScienceOn
11 M. S. Koo, K. Chung, and J. R. Youn, Polymer Engineering and Science, 41(7), 1177 (2001)   DOI   ScienceOn
12 C. W. Macosko, 'Rheology: Principles, Measurements, and Applications', p.425, Wiley, New York, 1994
13 V. Cristini, S. Guido, A. Alfani, J. Blawzdziewicz, and M. Loewenberg, J. Rheol., 47, 1283 (2003)   DOI   ScienceOn
14 H. M. Lee and O. O. Park, J. Rheol., 38(5),1405 (1994)   DOI   ScienceOn
15 D. J. Stein and F. J. Spera, Journal of Volcanology and Geothermal Research, 49, 157 (1992)   DOI   ScienceOn
16 W. J. Cho, H. Park, and J. R. Youn, Journal of Engineering Manufacture, 208, 121 (1994)   DOI
17 W. Yu and M. Bousmina, J. Rheol., 47(4), 1011 (2003)   DOI   ScienceOn
18 N. E. Jackson and C. L. Tucker, J. Rheol., 47(3), 659 (2003)   DOI   ScienceOn
19 A. S. Almusallam, R. G. Larson, and M. J. Solomon, J. Rheol.,44, 1055 (2000)   DOI   ScienceOn
20 M. Manga and M. Loewenberg, Journal of Volcanology and Geothermal Research, 105, 19 (2001)   DOI   ScienceOn
21 E. W. Llewellin, H. M. Mader, and S. D. R. Wilson, Proceedings of the Royal Society of London Series A, 458, 987 (2002)
22 A. C. Rust and M. Manga, J. Non-Newt. Fluid Mech., 104, 53 (2002)   DOI   ScienceOn
23 L. D. Landau and E. M. Lifshitz, 'Fluid Mechanics', p.76, Addison-Wesley Publishing Company, New York, 1959
24 G. W. M. Peters, S. Hansen, and H. E. H. Meijer, J. Rheol., 45(3),659 (2001)   DOI   ScienceOn
25 D. Klempner and K. C. Frisch, 'Handbook of Polymeric Foams and Foam Technology', Hanser Publishers, New York, 1991
26 G. I. Taylor, Proceedings of the Royal Society of London Series A, 138, 41 (1932)
27 H. Park and J. R. Youn, Polymer Engineering and Science, 35(23), 1899 (1995)   DOI
28 J. R. Youn and H. Park, Polymer Engineering and Science, 39(3),457 (1999)   DOI   ScienceOn
29 H. P. Grace, Chemical Engineering Communications, 14, 225 (1982)   DOI   ScienceOn
30 V. Cristini, R. W. Hooper, C. W. Macosko, M. Simeone, and S. Guido, Industrial & Engineering Chemistry Research, 41, 6305 (2002)   DOI   ScienceOn
31 E. D. Wetzel and C. L. Tucker, International Journal of Multiphase Flow, 25, 35 (1999)   DOI   ScienceOn
32 J. K. Mackenzie, Proceedings of the Royal Society of London Series B, 63, 2 (1950)
33 J. F. Palierne, Rheologica Acta, 29, 204 (1990)   DOI
34 C. Kim and J. R. Youn, Polymer-Plastics Technology and Engineering, 39(1), 163 (2000)   DOI   ScienceOn