Browse > Article
http://dx.doi.org/10.12989/scs.2022.45.4.591

Analysis and modeling of hyperstatic RC beam bonded by composite plate symmetrically loaded and supported  

Abderezak, Rabahi (Laboratory of Geomatics and sustainable development, University of Tiaret)
Daouadji, Tahar Hassaine (Laboratory of Geomatics and sustainable development, University of Tiaret)
Rabia, Benferhat (Laboratory of Geomatics and sustainable development, University of Tiaret)
Publication Information
Steel and Composite Structures / v.45, no.4, 2022 , pp. 591-603 More about this Journal
Abstract
The flexural strengthening of reinforced concrete beams by external bonding of composite materials has proved to be an efficient and practical technique. This paper presents a study on the flexural performance of reinforced concrete continuous beams with three spans (one span and two cantilevered) strengthened by bonding carbon fiber fabric (CFRP). The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened continuous beam, i.e., the continuous concrete beam, the FRP plate and the adhesive layer. The adherend shear deformations have been included in the present theoretical analyses by assuming a linear shear stress through the thickness of the adherends. Remarkable effect of shear deformations of adherends has been noted in the results. The theoretical predictions are compared with other existing solutions that shows good agreement, and It shows the effectiveness of CFRP strips in enhancing shear capacity of continuous beam. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite beam.
Keywords
composite plate; continuous RC beam; interfacial stresses; shear lag effect; strengthening;
Citations & Related Records
Times Cited By KSCI : 41  (Citation Analysis)
연도 인용수 순위
1 "Seismic performance of the concrete-encased CFST column to RC beam joints: Analytical study", Steel Compos. Struct., 36(5), 533-551. https://doi.org/10.12989/scs.2020.36.5.533.   DOI
2 Naser, M.Z. and Seitllari, A. (2020), "Concrete under fire: an assessment through intelligent pattern recognition", Eng. Comput., 36, 1915-1928. https://doi.org/10.1007/s00366-019-00805-1.   DOI
3 Ortiz-Navas, F., Navarro-Gregori, J., Leiva, G. and Serna, P. (2020), "Comparison of macrosynthetic and steel FRC shearcritical beams with similar residual flexure tensile strengths", Struct. Eng. Mech., 76(4), 491-503. https://doi.org/10.12989/sem.2020.76.4.491.   DOI
4 Panjehpour, M., Farzadnia, N., Demirboga, R. and Ali, A.A.A. (2016), "Behavior of high-strength concrete cylinders repaired with CFRP sheets", J. Civil Eng. Manage, 22(1), 56-64. https://doi.org/10.3846/13923730.2014.897965.   DOI
5 Rabahi A., Hassaine Daouadji T., Benferhat R. and Tounsi, A. (2021d), "New proposal for flexural strengthening of a continuous I-steel beam using FRP laminate under thermomechanical loading", Struct. Eng. Mech., 78(6), 703-714. http://dx.doi.org/10.12989/sem.2021.78.6.703.   DOI
6 Smith, S.T. and Teng, J.G. (2002), "Interfacial stresses in plated beams", Eng. Struct., 23(7), 857-871. http://dx.doi.org/10.1016/S0141-0296(00)00090-0.   DOI
7 Rabia B., Hassaine Daouadji, T. and Rabahi, A. (2020), "Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis", Adv. Mater. Res., 9(4), 265-287. http://dx.doi.org/10.12989/amr.2020.9.4.265.   DOI
8 Rabia, B., Daouadji, T.H. and Abderezak, R. (2021), "Analysis and sizing of RC beams reinforced by external bonding of imperfect functionally graded plate", Adv. Mater. Res., 10, 77-98. http://dx.doi.org/10.12989/amr.2021.10.2.077.   DOI
9 Rabia, B., Daouadji, T.H. and Abderezak, R. (2021), "Effect of air bubbles in concrete on the mechanical behavior of RC beams strengthened in flexion by externally bonded FRP plates under uniformly distributed loading", 1, 3(1), 41. http://dx.doi.org/10.12989/cme.2021.3.1.041.   DOI
10 Dar, M.A., Subramanian, N., Pande, S., Dar, A.R. and Raju, J. (2020), "Performance evaluation of different strengthening measures for exterior RC beam-column joints under opening moments", Struct. Eng. Mech., 74(2), 243-254. https://doi.org/10.12989/sem.2020.74.2.243.   DOI
11 Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Nonlocal nonlinear dynamic behavior of composite piezo-magnetic beams using a refined higher-order beam theory", Steel Compos. Struct., 35(4), 545-554. https://doi.org/10.12989/scs.2020.35.4.545.   DOI
12 Guenaneche, B. and Tounsi, A. (2014), "Effect of shear deformation on interfacial stress analysis in plated beams under arbitrary loading", Int. J. Adhesion Adhesives, 48, 1-13. https://doi.org/10.1016/j.ijadhadh.2013.09.016.   DOI
13 Guenaneche, B. and Tounsi, A. (2014), "Effect of shear deformation on interfacial stress analysis in plated beams under arbitrary loading", Int. J. Adhesion Adhesives, 48, 1-13. https://doi.org/10.1080/01694243.2016.1140703.   DOI
14 Hadj, B., Rabia, B. and Daouadji, T.H. (2021), "Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity", Coup. Syst. Mech., 10(1), 61-77. http://dx.doi.org/10.12989/csm.2021.10.1.061.   DOI
15 Hassaine Daouadji, T. (2017) "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Des., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.   DOI
16 He, X.J., Zhou, C.Y. and Wang, Y. (2020), "Interfacial stresses in reinforced concrete cantilever members strengthened with fibrereinforced polymer laminates", Adv. Struct. Eng., 23(2), 277- 288. https://doi.org/10.1177/1369433219868933.   DOI
17 Tahar, H.D., Abderezak, R. and Rabia, B. (2020), "Flexural performance of wooden beams strengthened by composite plate", Struct. Monit. Mainten, 7(3), 233-259. http://dx.doi.org/10.12989/smm.2020.7.3.233.   DOI
18 Rabia, B., Tahar, H.D. and Abderezak, R. (2020), "Thermomechanical behavior of porous FG plate resting on the WinklerPasternak foundation", Coup. Syst. Mech., 9(6), 499-519. http://dx.doi.org/10.12989/csm.2020.9.6.499.   DOI
19 Ricardo, C. and Paulo, P. (2020), "Main factors determining the shear behavior of interior RC beam-column joints", Struct. Eng. Mech., 76(3), 337-354. https://doi.org/10.12989/sem.2020.76.3.337.   DOI
20 Shariati, M., Mafipour, M.S., Haido, J.H., Yousif, S.T., Toghroli, A., Trung, N.T. and Shariati, A. (2020), "Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS)", Steel Compos. Struct, 34(1), 155. https://doi.org/10.12989/scs.2020.34.1.155.   DOI
21 Tahar, H.D., Abderezak, R. and Rabia, B. (2021), "A new model for adhesive shear stress in damaged RC cantilever beam strengthened by composite plate taking into account the effect of creep and shrinkage", Struct. Eng. Mech., 79(5), 531-540. http://dx.doi.org/10.12989/sem.2021.79.5.531.   DOI
22 Tlidji, Y., Benferhat, R., Trinh, L.C., Tahar, H.D. and Abdelouahed, T. (2021), "New state-space approach to dynamic analysis of porous FG beam under different boundary conditions", Adv. Nano Res., 11(4), 347-359. https://doi.org/10.12989/.2021.11.4.347.   DOI
23 Tounsi, A. (2006), "Improved theoretical solution for interfacial stresses in concrete beams strengthened with FRP plate", Int. J. Solids Struct., 43(14-15), 4154-4174. https://doi.org/10.1016/j.ijsolstr.2005.03.074.   DOI
24 Antar, K., Amara, K., Benyoucef, S., Bouazza, M. and Ellali, M. (2019), "Hygrothermal effects on the behavior of reinforcedconcrete beams strengthened by bonded composite laminate plates", Struct. Eng. Mech., 69(3), 327-334. https://doi.org/10.12989/sem.2019.69.3.327.   DOI
25 Henni, M.A.B., Abbes, B., Daouadji, T.H., Abbes, F. and Adim, B. (2021), "Numerical modeling of hygrothermal effect on the dynamic behavior of hybrid composite plates", Steel Compos. Struct., 39(6), 751-763. http://dx.doi.org/10.12989/scs.2021.39.6.751.   DOI
26 Abderezak, R., Daouadji, T.H. and Rabia, B. (2021), "Modeling and analysis of the imperfect FGM-damaged RC hybrid beams", Adv. Comput. Des., 6(2), 117-133. http://dx.doi.org/10.12989/acd.2021.6.2.117.   DOI
27 Abderezak, R., Rabia, B., Daouadji, T.H., Abbes, B., Belkacem, A. and Abbes, F. (2018), "Elastic analysis of interfacial stresses in prestressed PFGM-RC hybrid beams", Adv. Mater. Res., 7(2), 83. https://doi.org/10.12989/amr.2018.7.2.083.   DOI
28 Ashour, A.F., El-Refaie, S.A. and Garrity, S.W. (2004), "Flexural strengthening of RC continuous beams using CFRP laminates", Cement Concrete Compos., 26(7), 765-775. https://doi:10.1016/j.cemconcomp.2003.07.002.   DOI
29 Benferhat, R., Daouadji, T.H. and Abderezak, R. (2021), "Effect of porosity on fundamental frequencies of FGM sandwich plates", 1, 3(1), 25. http://dx.doi.org/10.12989/cme.2021.3.1.025.   DOI
30 Tounsi, A., Daouadji, T.H. and Benyoucef, S. (2009), "Interfacial stresses in FRP-plated RC beams: Effect of adherend shear deformations", Int. J. Adhesion Adhesives, 29(4), 343-351. https://doi.org/10.1016/j.ijadhadh.2008.06.008.   DOI
31 Tahar, H.D., Abderezak, R., Rabia, B. and Tounsi, A. (2021), "Impact of thermal effects in FRP-RC hybrid cantilever beams", Struct. Eng. Mech., 78(5), 573-583. http://dx.doi.org/10.12989/sem.2021.78.5.573.   DOI
32 Tahar, H.D., Abderezak, R., Rabia, B. and Tounsi, A. (2021), "Performance of damaged RC continuous beams strengthened by prestressed laminates plate: Impact of mechanical and thermal properties on interfacial stresses", Coup. Syst. Mech., 10(2), 161-184. http://dx.doi.org/10.12989/csm.2021.10.2.161.   DOI
33 Tahar, H.D., Tayeb, B., Abderezak, R. and Tounsi, A. (2021), "New approach of composite wooden beam-reinforced concrete slab strengthened by external bonding of prestressed composite plate: Analysis and modeling", Struct. Eng. Mech., 78(3), 319-332. http://dx.doi.org/10.12989/sem.2021.78.3.31.   DOI
34 Tayeb, B., Daouadji, T.H., Abderezak, R. and Tounsi, A. (2021), "Structural bonding for civil engineering structures: New model of composite I-steel-concrete beam strengthened with CFRP plate", Steel Compos. Struct., 41(3), 417-435. https://doi.org/10.12989/scs.2021.41.3.417.   DOI
35 Tlidji, Y., Benferhat, R. and Tahar, H.D. (2021), "Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity", Struct. Eng. Mech., 77(2), 217-229. http://dx.doi.org/10.12989/sem.2021.77.2.217.   DOI
36 Zhang, J., Sun, Y., Li, G., Wang, Y., Sun, J. and Li, J. (2020), "Machine-learning-assisted shear strength prediction of reinforced concrete beams with and without stirrups", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-020-01076-x.   DOI
37 Liu, S., Zhou, Y., Zheng, Q., Zhou, J., Jin, F. and Fan, H. (2019), "Blast responses of concrete beams reinforced with steel-GFRP composite bars", Structures, 22, 200-212. https://doi.org/10.1016/j.istruc.2019.08.010.   DOI
38 Loor, A.S., Bidgoli, M.R. and Mazaheri, H. (2022), "On the use of differential quadrature-three-term conjugate finite-step length methods for reliability analysis of steel fiber-reinforced sinusoidal rupture beams", Eng. Comput., 38, 2067-2078.   DOI
39 Yuan, C., Chen, W., Pham, T.M. and Hao, H. (2019), "Effect of aggregate size on bond behaviour between basalt fibre reinforced polymer sheets and concrete", Compos. Part B: Eng., 158, 459-474. https://doi.org/10.1016/j.compositesb.2018.09.089.   DOI
40 Zhang, G., Ali, Z.H., Aldlemy, M.S., Mussa, M.H., Salih, S.Q., Hameed, M.M. and Yaseen, Z.M. (2020), "Reinforced concrete deep beam shear strength capacity modelling using an integrative bio-inspired algorithm with an artificial intelligence model", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-01137-1.   DOI
41 Zohra, A., Benferhat, R., Tahar, H.D. and Tounsi, A. (2021), "Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations", Struct. Eng. Mech., 77(6), 797-807. http://dx.doi.org/10.12989/sem.2021.77.6.797.   DOI
42 Tormen, A.F., Pravia, Z.M.C., Ramires, F.B. and Kripka, M. (2020), "Optimization of steel-concrete composite beams considering cost and environmental impact", Steel Compos. Struct., 34(3), 409-421. https://doi.org/10.12989/scs.2020.34.3.409.   DOI
43 Tahar, H.D., Abderezak, R. and Rabia, B. (2021), "Hyperstatic steel structure strengthened with prestressed carbon/glass hybrid laminated plate", Coupl. Syst. Mech., 10(5), 393-414. https://doi.org/10.12989/csm.2021.10.5.393.   DOI
44 Tahar, H.D., Boussad, A., Abderezak, R., Rabia, B., Fazilay, A. and Belkacem, A. (2019), "Flexural behaviour of steel beams reinforced by carbon fibre reinforced polymer: Experimental and numerical study", Struct. Eng. Mech., 72(4), 409-420. https://doi.org/10.12989/sem.2019.72.4.409.   DOI
45 Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135.   DOI
46 Wang, Y.H., Yu, J., Liu, J.P., Zhou, B.X. and Chen, Y.F. (2020), "Experimental study on assembled monolithic steel-prestressed concrete composite beam in negative moment", J. Construct. Steel Res., 167, 105667. https://doi.org/10.1016/j.jcsr.2019.06.004.   DOI
47 Aicha, K., Rabia, B., Daouadji, T.H. and Bouzidene, A. (2020), "Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions", Couple. Syst. Mech., 9(6), 575-597. http://dx.doi.org/10.12989/csm.2020.9.6.575.   DOI
48 Yang, Y. (2020), "Experimental study on shear behaviors of Partial Precast Steel Reinforced Concrete beams", Steel Compos. Struct., 37(5), 605-620. https://doi.org/10.12989/scs.2020.37.5.605.   DOI
49 Yehia, A. and Zaher, A. (2018), "Flexural behavior of FRP strengthened concrete-wood composite beams", Ain Shams Eng. J., 9(4), 3419-3424. https://doi.org/10.1016/j.asej.2018.06.003.   DOI
50 Yu, Y., Yang, Y., Xue, Y. and Liu, Y. (2020), "Shear behavior and shear capacity prediction of precast concrete-encased steel beams", Steel Compos. Struct., 36(3), 261-272. https://doi.org/10.12989/scs.2020.36.3.261.   DOI
51 Rabahi A., Hassaine Daouadji, T., Benferhat, R. and Tounsi, A. (2021c), "Mechanical behavior of RC cantilever beams strengthened with FRP laminate plate", Adv. Comput. Des., 6(3),169-190. http://dx.doi.org/10.12989/acd.2021.6.3.169.   DOI
52 Pello L., Leire G., Ignacio P. and Jose-Tomas S.J. (2020), "Flexural strengthening of low-grade reinforced concrete beams with compatible composite material: Steel Reinforced Grout (SRG)", Construct. Build. Mater., 235, article 117790. https://doi.org/10.1016/j.conbuildmat.2019.117790.   DOI
53 Rabahi A., Hassaine Daouadji, T. and Benferhat, R. (2021b), "Aluminum beam reinforced by externally bonded composite materials", Adv. Mater. Res., 10(1), 23-44. http://dx.doi.org/10.12989/amr.2021.10.1.023.   DOI
54 Rabahi A., Hassaine Daouadji, T. and Benferhat, R. (2021f), "New solution for damaged porous RC cantilever beamsstrengthening by composite plate", Adv. Mater. Res., 10(3), 169-194. http://dx.doi.org/10.12989/amr.2021.10.3.169.   DOI
55 Rabahi Abderezak, Hassaine Daouadji, T. and Benferhat, R. (2020), "Analysis of interfacial stresses of the reinforced concrete foundation beams repairing with composite materials plate", Coup. Syst. Mech., 9(5), 473-498. http://dx.doi.org/10.12989/csm.2020.9.5.473.   DOI
56 Rabahi, A., Hassaine Daouadji, T. and Benferhat, R. (2021e), "Fiber reinforced polymer in civil engineering: Shear lag effect on damaged RC cantilever beams bonded by prestressed plate", Couple. Syst. Mech., 10(4), 299-316. http://dx.doi.org/10.12989/csm.2021.10.4.299.   DOI
57 Chedad, A., Daouadji, T.H., Abderezak, R., Belkacem, A., Abbes, B., Rabia, B. and Abbes, F. (2017), "A high-order closed-form solution for interfacial stresses in externally sandwich FGM plated RC beams", Adv. Mater. Res., 6(4), 317. https://doi.org/10.12989/amr.2017.6.4.317.   DOI
58 Bensattalah, T., Hassaine Daouadji, T. and Zidour, M. (2019), "Influences the shape of the floor on the behavior of buildings under seismic effect", In International Symposium on Materials and Sustainable Development, Springer, Cham. https://doi.org/10.1007/978-3-030-43268-33.   DOI
59 Chen, Z., Zhou, J., Liang, Y. and Ye, P. (2020), "Residual behavior of recycled aggregate concrete beam and column after elevated temperatures", Struct. Eng. Mech., 76(4), 513-528. https://doi.org/10.12989/sem.2020.76.4.513.   DOI
60 Benachour, A., Benyoucef, S. and Tounsi, A. (2008), "Interfacial stress analysis of steel beams reinforced with bonded prestressed FRP plate", Eng. Struct., 30(11), 3305-3315. https://doi.org/10.1016/j.engstruct.2008.05.007.   DOI
61 De Domenico, D. and Ricciardi, G. (2020), "A stress field approach for the shear capacity of RC beams with stirrups", Struct. Eng. Mech., 73(5), 515-527. https://doi.org/10.12989/sem.2020.73.5.515.   DOI