• 제목/요약/키워드: interfacial bonding

검색결과 331건 처리시간 0.036초

Selective Carbonization and Nitridation of Titanium in (ZrTi)O2 Powders Synthesized by Copreciptation Method

  • Shin Soon-Gi
    • Korean Journal of Materials Research
    • /
    • 제15권10호
    • /
    • pp.662-666
    • /
    • 2005
  • Solid solutions of $(Zr/Ti)O_2$ were prepared in powder form by the coprecipitation technique. After mixing with carbon or exposing to nitrogen gas at elevated temperature, titanium cations selectively diffused out from the oxide compound to form titanium carbide (TiC) or titanium nitride (TiN), respectively. TiN formed strong interfacial contacts between the oxide grains. In contrast, TiC formed as small crystallites on oxide grains but did not bind the matrix grains together. TiN therefore played a role in strengthening the interparticle bonding, but TiC weakened the bonding between grains. Partial diffusion of titanium cations also led to nanolayered structure being formed between the oxide grains, which provided weak interfacial layers that fractured in a step-wise fashion.

High-temperature Semiconductor Bonding using Backside Metallization with Ag/Sn/Ag Sandwich Structure (Ag/Sn/Ag 샌드위치 구조를 갖는 Backside Metallization을 이용한 고온 반도체 접합 기술)

  • Choi, Jinseok;An, Sung Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • 제27권1호
    • /
    • pp.1-7
    • /
    • 2020
  • The backside metallization process is typically used to attach a chip to a lead frame for semiconductor packaging because it has excellent bond-line and good electrical and thermal conduction. In particular, the backside metal with the Ag/Sn/Ag sandwich structure has a low-temperature bonding process and high remelting temperature because the interfacial structure composed of intermetallic compounds with higher melting temperatures than pure metal layers after die attach process. Here, we introduce a die attach process with the Ag/Sn/Ag sandwich structure to apply commercial semiconductor packages. After the die attachment, we investigated the evolution of the interfacial structures and evaluated the shear strength of the Ag/Sn/Ag sandwich structure and compared to those of a commercial backside metal (Au-12Ge).

A Study on the Effect of Molding Pressure on the Interlaminar Fracture Toughness (층간파괴인성치에 미치는 성형압력의 영향에 관한 연구)

  • 김형진;김재동;고성위
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권5호
    • /
    • pp.1140-1147
    • /
    • 2001
  • This paper describes the effect of various molding pressure for Mode I. Mode II interlaminar fracture toughness of carbon fiber reinforced plastic composites by using double cantilever beam(DCB), end notched flexure(ENF) and end loaded split(ELS) Specimen. The value of $G_{IC}$, $G_{IIC}$ as a function of various molding pressure is almost same at 307, 431, 585 kPa, however it shows highest value under 307kPa molding pressure, The SEM photographs show good fiber distribution and interfacial bonding of composites when the molding pressure is the 307kPa.

  • PDF

High performance epoxy nanocomposites with amine-functionalized graphenes

  • Park, Sol-Mon;Kim, Dae-Su
    • Proceedings of the KAIS Fall Conference
    • /
    • 한국산학기술학회 2010년도 추계학술발표논문집 1부
    • /
    • pp.470-473
    • /
    • 2010
  • Graphene, consisting of a single layer of carbon in a two-dimensional lattice, has been emerging as a fascinating material with many unique physical, chemical and mechanical properties. In this study, graphenes were prepared by a chemical method. To develop high performance polymer nanocomposites reinforced by graphenes, adequate dispersion of the fillers and strong interfacial bonding between the fillers and the polymer matrix are essential. The purpose of this study was to examine the influence of introducing amine groups on the surfaces of graphenes. FT-IR spectroscopy, SEM were used to confirm the functionalization. Epoxy nanocomposites comprising the graphenes were prepared and their characteristics were investigated by DSC, DMA and TMA. Fracture surfaces of the nanocomposites were investigated by SEM. The functionalized graphenes induced strong interfacial bonding than the pristine graphenes and resulted in considerable improvements in the performance of the nanocomposites.

  • PDF

Evaluation on the Properties and Interfacial Bonding Form of Mortar Mixed with Waste Shells (패각류를 혼입한 모르터의 기초물성 평가 및 계면 결합상태)

  • Moon, Hoon;Kim, Ji-Hyun;Lee, Jae-Yong;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.208-209
    • /
    • 2014
  • Recently, many environmental problems occur due to the waste shells in South Korea. In case of oyster and cockle, utilizing waste shells to produce fertilizer once also, but due to sluggish consumption, production is no longer difficult. The stored amount of waste shells in the fertilizer manufacturing company is overfilled, and thus cannot accept any more of the waste shells. As a result, landfill and dumping of waste shells have become an increasingly environmental problems. In this research, the basic physical properties and interfacial bonding form of the mortar mixed with waste shells (manila clam, cockle, clam, sea mussel, oyster) were evaluated.

  • PDF

An investigation of tribology properties carbon nanotubes reinforced epoxy composites (표면 개질된 탄소나노튜브를 사용한 에폭시 복합재료의 마모특성에 관한 연구)

  • Sulong A.B.;Goak J.C.;Park Joo-Hyuk
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.663-667
    • /
    • 2005
  • Surface modified carbon nanotubes were applied into the epoxy composites to investigate its tribological property. Carbon nanotubes reinforced epoxy composites were fabricated by casting. Effects to the tribological property of loading concentrations and types of surface modification of carbon nanotubes were investigated under sliding condition using linear reciprocal sliding wear tester. The results show that the small amount of carbon nanotubes into the epoxy exhibited lower weight loss than the pure epoxy. It is concluded that the effect of an enormous aspect ratio of carbon nanotubes surface area which wider than conventional fillers that react as interface for stress transfer. As increased the contents of carbon nanotubes, the weight loss from the wear test was reduced. And the surface modified carbon nanotubes show better tribological property than as produced carbon nanotubes. It is due that a surface modification of carbon nanotubes increases the interfacial bonding between carbon nanotubes and epoxy matrix through chemical bonding. Changes in worn surface morphology are also observed by optical microscope and SEM for investigating wear behaviors. Carbon nanotubes in the epoxy matrix near the surface are exposed, because it becomes the lubricating working film on the worn surface. It reduces the friction and results in the lower surface roughness morphology in the epoxy matrix as increasing the contents of the carbon nanotubes.

  • PDF

AN EXPERIMENTAL STUDY ON BOND STRENGTH OF REPAIRED POSTERIOR COMPOSITE RESINS (구치부용(臼齒部用) Composite resin의 부분재수복시(部分再修復時)의 접착강도(接着强度)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Chung, Inn-Gyo;Min, Byung-Soon;Choi, Ho-Young;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • 제13권1호
    • /
    • pp.131-137
    • /
    • 1988
  • The purpose of this study was to investigate the interfacial bond strength of repaired composite resins, Lite-Fil P and Bis-Fil II, under different interfacial conditions. The matured composite resin specimen were prepared as Table I and divided into 9 groups. All specimens were stored in distilled water at $37^{\circ}C$ for 24 hours before testing. The results were as follows; 1. The bond strength of the groups that bonding agent was applicated was greater than that of the groups that bonding agent was not applicated. 2. The bond strength of the saliva contaminated groups was the lowest. 3. The bond strength of the group that chemical cured composite resin bonded to chemical cured composite resin was greater than that of the other groups. 4. The bond strength of the no-treated group was greater than that of saliva contaminated group, and lesser than that of the bonding agent applicated groups.

  • PDF

Optimal pressure and temperature for Cu-Cu direct bonding in three-dimensional packaging of stacked integrated circuits

  • Seunghyun Yum;June Won Hyun
    • Journal of the Korean institute of surface engineering
    • /
    • 제56권3호
    • /
    • pp.180-184
    • /
    • 2023
  • Scholars have proposed wafer-level bonding and three-dimensional (3D) stacked integrated circuit (IC) and have investigated Cu-Cu bonding to overcome the limitation of Moore's law. However, information about quantitative Cu-Cu direct-bonding conditions, such as temperature, pressure, and interfacial adhesion energy, is scant. This study determines the optimal temperature and pressure for Cu-Cu bonding by varying the bonding temperature to 100, 150, 200, 250, and 350 ℃ and pressure to 2,303 and 3,087 N/cm2. Various conditions and methods for surface treatment were performed to prevent oxidation of the surface of the sample and remove organic compounds in Cu direct bonding as variables of temperature and pressure. EDX experiments were conducted to confirm chemical information on the bonding characteristics between the substrate and Cu to confirm the bonding mechanism between the substrate and Cu. In addition, after the combination with the change of temperature and pressure variables, UTM measurement was performed to investigate the bond force between the substrate and Cu, and it was confirmed that the bond force increased proportionally as the temperature and pressure increased.

A Characteristic of Fe-Cu Interfacial Reaction in the Hydraulic Cylinder Block for Vehicle Parts (수송기기 유압 실린더 블록 재료의 Fe-Cu 계면반응 특성)

  • Kim, Hae-Ji;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제3권1호
    • /
    • pp.90-94
    • /
    • 2004
  • Generally, a hydraulic cylinder block which is one of a vehicle parts that plays Important role in excavator power transmission, has copper alloy separation phenomenon by sliding motion between metals in high pressure condition. In this paper, to solve this problem, the interfacial reaction layer of Fe-Cu With SCM440 and copper alloy is studied through the melting method. As the result of this study, it is found that the interfacial reaction layer of $1{\mu}m$ created in the interface of Fe-Cu which has very strong physical bonding. It has been also confirmed that the melting method can improve life of the hydraulic cylinder block.

  • PDF