• Title/Summary/Keyword: interface damage

Search Result 352, Processing Time 0.022 seconds

Seismic Performance Analysis of RC Subway Station Structures (철근콘크리트 지하철 정거장 구조물의 내진 성능 해석)

  • 남상혁;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.123-128
    • /
    • 2002
  • In this paper, an averaged constitutive model of concrete and reinforcing bars for RC structure and path-dependent Ohsaki's model for soil are applied, and an elasto-plastic interface model having thickness is preposed for seismic analysis of underground RC subway station structure. A finite element analysis technique is developed by applying aforementioned constitutive equations and verified through seismic analysis of underground RC subway station. Then, failure mechanisms of the RC subway station structure under seismic action are numerically derived. Then, failure modes and damage levels of the station are also analytically evaluated for the cases of several designs of the underground RC station.

  • PDF

Towards an Improved Understanding of Bond Behaviors

  • Choi, Oan Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.239-243
    • /
    • 2003
  • A reducing bearing angle theory for bond of ribbed reinforcing bars to concrete is proposed to simulate experimental observation. Analytical expressions to determine bond strength for splitting and pullout failure are derived, where the bearing angle is a key variable. As bearing angle is reduced, splitting strength decreases and shearing strength increases. The proposed reducing bearing angle theory is effective to simulate damage of the deformed bar-concrete interface and understand bond mechanism of ribbed reinforcing steel in concrete structures.

  • PDF

Superfine Flip-Chip Interconnections in 20-$\mu\textrm{m}$-pitch

  • Bonkohara, Manabu
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.09a
    • /
    • pp.183-199
    • /
    • 2002
  • Reliability.The reliability strongly depended on the CTE of underfill resin..The fractured portion was identical with the maximum plastic equivalent strain..1 % or less value of the maximum plastic equivalent strain certified more than 1000 cycle of TCT life. UFB.Bonding accuracy was confirmed within2$2{\mu}{\textrm}{m}$..The fundamental bondability of UFB was confirmed with no damage around aluminum pads. Some dislocations and vacancies were observed at the interface, however, the atomic level bonding was confirmed. CBB.Dry process was applied to UBM removal.

  • PDF

Frequency-dependent C-V Characteristic-based Extraction of Interface Trap Density in Normally-off Gate-recessed AlGaN/GaN Heterojunction Field-effect Transistors

  • Choi, Sungju;Kang, Youngjin;Kim, Jonghwa;Kim, Jungmok;Choi, Sung-Jin;Kim, Dong Myong;Cha, Ho-Young;Kim, Hyungtak;Kim, Dae Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.5
    • /
    • pp.497-503
    • /
    • 2015
  • It is essential to acquire an accurate and simple technique for extracting the interface trap density ($D_{it}$) in order to characterize the normally-off gate-recessed AlGaN/GaN hetero field-effect transistors (HFETs) because they can undergo interface trap generation induced by the etch damage in each interfacial layer provoking the degradation of device performance as well as serious instability. Here, the frequency-dependent capacitance-voltage (C-V) method (FDCM) is proposed as a simple and fast technique for extracting $D_{it}$ and demonstrated in normally-off gate-recessed AlGaN/GaN HFETs. The FDCM is found to be not only simpler than the conductance method along with the same precision, but also much useful for a simple C-V model for AlGaN/GaN HFETs because it identifies frequency-independent and bias-dependent capacitance components.

Implementation of Ultrasonic Immersion Technique for Babbitt Metal Debonding in Turbine Bearing (초음파 수침법을 이용한 터빈베어링 Babbitt금속 박리 검사 기술)

  • Jung, Gye-Jo;Park, Sang-Ki;Cho, Yong-Sang;Park, Byung-Cheol;Kil, Doo-Song
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.348-353
    • /
    • 2004
  • This study is aimed for the implementation of ultrasonic method to assess the reliability of turbine bearings. A modified ultrasonic immersion technique was carried out in both laboratory experiment and field application. From the laboratory results, we confirmed that the condition of interface layer between the babbitt and base metal be monitored by the C-Scan. The C-scan image by the ultrasonic immersion test can be used successfully to observe the condition of interface layer. The testing with a focused transducer provides a promising approach for estimating the extent of the damaged region and observing the interface layer effectively. The difference of the ultrasonic reflection ratio between the bonding and debonding area at the interface layer is one of the key parameters for assessing the extent of the damaged area; additionally, the reflection amplitude exhibits a favorable correlation with the overall damage level. The technique developed in this study was applied to the inspection of the turbine bearings at several power plants in Korea whereby the applicability in the field can be ascertained.

Effects of Matrix Strength, Fiber Type, and Fiber Content on the Electrical Resistivity of Steel-Fiber-Reinforced Cement Composites During Fiber Pullout (매트릭스 강도, 섬유 형식 및 보강량에 강섬유 보강 시멘트 복합재료의 인발시 전기저항에 미치는 영향)

  • Le, Huy Viet;Kim, Dong Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.675-689
    • /
    • 2019
  • Development of smart construction materials with both self-strain and self-damage sensing capacities is still difficult because of little information about the self-damage sensing source. Herein, we investigate the effects of the matrix strength, fiber geometry, and fiber content on the electrical resistivity of steel-fiber-reinforced cement composites by multi-fiber pullout testing combined with electrical resistivity measurements. The results reveal that the electrical resistivity of steel-fiber-reinforced cement composites clearly decreased during fiber-matrix debonding. A higher fiber-matrix interfacial bonding generally leads to a higher reduction in the electrical resistivity of the composite during fiber debonding due to the change in high electrical resistivity phase at the fiber-matrix interface. Higher matrix strengths, brass-coated steel fibers, and deformed steel fibers generally produced higher interfacial bond strengths and, consequently, a greater reduction in electrical resistivity during fiber debonding.

Effect of material mechanical differences on shear properties of contact zone composite samples: Experimental and numerical studies

  • Wang, Weiqi;Ye, Yicheng;Wang, Qihu;Liu, Xiaoyun;Yang, Fan;Tan, Wenkan
    • Structural Engineering and Mechanics
    • /
    • v.76 no.2
    • /
    • pp.153-162
    • /
    • 2020
  • Aiming at the mechanical and structural characteristics of the contact zone composite rock, the shear tests and numerical studies were carried out. The effects of the differences in mechanical properties of different materials and the normal stress on shear properties of contact zone composite samples were analyzed from a macro-meso level. The results show that the composite samples have high shear strength, and the interface of different materials has strong adhesion. The differences in mechanical properties of materials weakens the shear strength and increase the shear brittleness of the sample, while normal stress will inhibit these effect. Under low/high normal stress, the sample show two failure modes, at the meso-damage level: elastic-shearing-frictional sliding and elastic-extrusion wear. This is mainly controlled by the contact and friction state of the material after damage. The secondary failure of undulating structure under normal-shear stress is the nature of extrusion wear, which is positively correlated to the normal stress and the degree of difference in mechanical properties of different materials. The increase of the mechanical difference of the sample will enhance the shear brittleness under lower normal stress and the shear interaction under higher normal stress.

Effect of Antistripping Agent on the Enhancement of Resistance to Moisture Damage of Asphalt Mixture (아스팔트 혼합물의 내수분손상 향상에 대한 박리방지제의 효과)

  • Lee, Eun-Kyoung;Choi, Sei-Young
    • Journal of Adhesion and Interface
    • /
    • v.10 no.4
    • /
    • pp.182-190
    • /
    • 2009
  • In this work, effect of antistrip additives to reduce moisture damage of asphalt mixture were studied. Asphalt antistripping agents were prepared by condensation of formaldehyde with tetraethylene pentamine (TEPA), triethylenetetramine (TETA) and bis(hexamethylene)-triamine (BHMT), respectively. And also the metal type antistripping agent was prepatred by neutralization of stearic acid or palmitic acid with metal hydroxide. Mechanical characteristics of the asphalt mixture added antistripping agent were evaluated with Marshall stability, submerging residuals and coating rate. It was found that antistripping agent prepared in this study reduced moisture damages of asphalt mixtures. In particular, asphalt mixtures added BHMT and C/S (Calcium stearate hydroxide) antistripping agent showed highest submerging and coating rate. Because BHMT and C/S type antistripping agent was to improve bonding between asphalt and aggregate owing to increase of amine concentration and role of metal surfactant.

  • PDF

Interface trap density distribution in 3D sequential Integrated-Circuit and Its effect (3차원 순차적 집적회로에서 계면 포획 전하 밀도 분포와 그 영향)

  • Ahn, TaeJun;Lee, Si Hyun;Yu, YunSeop
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2899-2904
    • /
    • 2015
  • This paper introduces about the effect on $I_{DS}-V_{GS}$ characteristic of transistor that interface trap charge is created by damage due to heat in a 3D sequential inverter. A interface trap charge distribution in oxide layer in a 3D sequential inverter is extracted using two-dimensional device simulator. The variation of threshold voltage of top transistor according to the gate voltage variation of bottom transistor is also described in terms of Inter Layer Dielectric (ILD) length of 3D sequential inverter, considering the extracted interface trap charge distribution. The extracted interface trap density distribution shows that the bottom $HfO_2$ layer and both the bottom and top $SiO_2$ layer were relatively more affected by heat than the top $HfO_2$ layer with latest process. The threshold voltage variations of the shorter length of ILD in 3D sequential inverter under 50nm is higher than those over 50nm. The $V_{th}$ variation considering the interface trap charge distribution changes less than that excluding it.

Evaluation of Mechanical Properties and Damage Sensing of CNT-Polypropylene Composites by Electro-Micromechanical Techniques (CNT-폴리프로필렌 복합재료의 기계적 물성평가 및 전기 미세평가법을 이용한 손상감지)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Kim, Hak-Soo;Kim, Dae-Sik;Lee, Choon-Soo;Park, Joung-Man
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • CNT-polypropylene (PP) composites were compounded by solvent dispersion method with uniform dispersion by using twin screw extruder. Damage sensing effects based on conductive carbon nanotubes (CNT) were evaluated to monitor the internal damage of CNT-PP composites using electrical resistance measurement. Mechanical and interfacial properties of CNT-PP composites were investigated and compared with neat PP. The mechanical properties of PP matrix were improved after adding CNT, because of the reinforcing effect of CNT fillers. In order to monitor the internal damage of CNT-PP composite, the change in electrical resistance of the composites was measured under fatigue loading and bending tests. CNT fillers exhibited good sensing under electrical resistance measurements. It is shown that CNT-PP composites with low CNT contents allow identifying critical cyclic loading, which are found to be accompanied with the internal failure.