DOI QR코드

DOI QR Code

Effects of Matrix Strength, Fiber Type, and Fiber Content on the Electrical Resistivity of Steel-Fiber-Reinforced Cement Composites During Fiber Pullout

매트릭스 강도, 섬유 형식 및 보강량에 강섬유 보강 시멘트 복합재료의 인발시 전기저항에 미치는 영향

  • ;
  • 김동주 (세종대학교 건설환경공학과)
  • Received : 2019.08.05
  • Accepted : 2019.10.29
  • Published : 2019.12.01

Abstract

Development of smart construction materials with both self-strain and self-damage sensing capacities is still difficult because of little information about the self-damage sensing source. Herein, we investigate the effects of the matrix strength, fiber geometry, and fiber content on the electrical resistivity of steel-fiber-reinforced cement composites by multi-fiber pullout testing combined with electrical resistivity measurements. The results reveal that the electrical resistivity of steel-fiber-reinforced cement composites clearly decreased during fiber-matrix debonding. A higher fiber-matrix interfacial bonding generally leads to a higher reduction in the electrical resistivity of the composite during fiber debonding due to the change in high electrical resistivity phase at the fiber-matrix interface. Higher matrix strengths, brass-coated steel fibers, and deformed steel fibers generally produced higher interfacial bond strengths and, consequently, a greater reduction in electrical resistivity during fiber debonding.

자가응력 및 자가손상 감지능력을 모두 가지는 스마트 콘크리트의 개발은 아직까지 손상 감지 능력에 대한 원인 규명이 명확하지 않아 어려운 현실이다. 따라서, 본 연구에서는 매트릭스 강도, 섬유 형식 및 보강량이 강섬유 보강 시멘트 복합재료의 인발시 전기저항에 미치는 영향을 평가하였다. 실험으로부터 섬유와 매트릭스 사이 계면에서의 탈착으로 전기저항률이 감소한다는 사실을 알 수 있었다. 섬유와 매트릭스 사이 계면 부착강도가 높을수록 더 큰 전기저항률의 감소를 유발하였다. 따라서, 고강도 매트릭스, 황동 도금된 강섬유 그리고 변형된 강섬유를 사용시 높은 계면부착강도를 유발하고 그 결과 더 큰 전기저항률 감소를 유발하였다.

Keywords

References

  1. Abdallah, S., Fan, M. and Rees, D. W. A. (2018). "bonding mechanisms and strength of steel fiber-reinforced cementitious composites: Overview." Journal of Materials in Civil Engineering, Vol. 30, No. 3, p. 04018001. doi: 10.1061/(ASCE)MT.1943-5533.0002154.
  2. Al Khalaf, M. N. and Page, C. L. (1979). "Steel/mortar interfaces: Microstructural features and mode of failure." Cement and Concrete Research, Vol. 9, No. 2, pp. 197-207. doi: 10.1016/0008-8846(79)90026-7.
  3. Al Khalaf, M. N., Page, C. L. and Ritchie, A. G. B. (1980). "Effects of fibre surface composition on mechanical properties of steel fibre reinforced mortars." Cement and Concrete Research, Vol. 10, No. 1, pp. 71-77. https://doi.org/10.1016/0008-8846(80)90053-8
  4. Alwan, J. M., Naaman, A. and Hansen, W. (1991). "Pull-out work of steel fibers from cementitious composites?: Analytical investigation." Cement & Concrete Composites, Vol. 13, No. 4, pp. 247-255. doi: 10.1016/0958-9465(91)90030-L.
  5. Azhari, F. and Banthia, N. (2012). "Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing." Cement and Concrete Composites, Vol. 34, No. 7, pp. 866-873. doi: 10.1016/j.cemconcomp.2012.04.007.
  6. Bartos, P. (1981). "Review paper: Bond in fibre reinforced cements and concretes." The International Journal of Cement Composites, Vol. 3, No. 3, pp. 159-177.
  7. Bentur, A. and Alexander, M. G. (2000). "A review of the work of the RILEM TC 159-ETC: Engineering of the interfacial transition zone in cementitious composites." Materials and Structures, Vol. 33, No. 2, pp. 82-87. doi: 10.1007/BF02484160.
  8. Bentur, A., Diamond, S. and Mindess, S. (1985). "The microstructure of the steel fibre-cement interface." Journal of Materials Science, Vol. 20, No. 10, pp. 3610-3620. doi: 10.1007/BF01113768.
  9. Bontea, D. M., Chung, D. D. L. and Lee, G. C. (2000). "Damage in carbon fiber-reinforced concrete, monitored by electrical resistance measurement." Cement and Concrete Research, Vol. 30, No. 4, pp. 651-659. doi: 10.1016/S0008-8846(00)00204-0.
  10. Chan, Y. W. and Chu, S. H. (2004). "Effect of silica fume on steel fiber bond characteristics in reactive powder concrete." Cement and Concrete Research, Vol. 34, No. 7, pp. 1167-1172. doi: 10.1016/j.cemconres.2003.12.023.
  11. Chung, D. D. L. (2002). "Piezoresistive cement-based materials for strain sensing." Journal of Intelligent Material Systems and Structures, Vol. 13, No. 9, pp. 599-609. doi: 10.1106/104538902031861.
  12. Ford, S. J., Shane, J. D. and Mason, T. O. (1998). "Assigment of features in impedance spectra of the cement paste/steel system." Cement and Concrete Research, Vol. 28, No. 12, pp. 1737-1751. https://doi.org/10.1016/S0008-8846(98)00156-2
  13. Fu, X and Chung, D. D. L. (1997). "Bond strength and contact electrical resistivity between cement and stainless steel fiber: their correlation and dependence on fiber surface treatment and curing age." ACI Materials Journal, Vol. 94, No. 3, pp. 203-208.
  14. Fu, X., Lu, W. and Chung, D. D. L. (1998). "Improving the Strain-sensing ability of carbon fiber-reinforced cement by ozone treatment of the fibers." Cement and Concrete Research, Vol. 28, No. 2, pp. 183-187. doi: 10.1016/S0008-8846(97)00265-2.
  15. Han, B. and Ou, J. (2007). "Embedded piezoresistive cement-based stress/strain sensor." Sensors and Actuators, A: Physical, Vol. 138, No. 2, pp. 294-298. doi: 10.1016/j.sna.2007.05.011.
  16. Han, B., Yu, X. and Kwon, E. (2009). "A self-sensing carbon nanotube/cement composite for traffic monitoring." Nanotechnology, Vol. 20, No. 44, pp. 1-5. doi: 10.1088/0957-4484/20/44/445501.
  17. Han, B., Yu, X. and Ou, J. (2014). Self-sensing concrete in smart structures, Butterworth Heinemann, Kindlington.
  18. Han, B., Zhang K., Yu, X., Kwon, E. and Ou, J. (2011). "Nickel particle-based self-sensing pavement for vehicle detection." Measurement: Journal of the International Measurement Confederation, Vol. 44, No. 9, pp. 1645-1650. doi: 10.1016/j.measurement.2011.06.014.
  19. Han, B., Zhang, K., Yu, X., Kwon, E. and Ou, J. (2012). "Electrical characteristics and pressure-sensitive response measurements of carboxyl MWNT/cement composites." Cement and Concrete Composites, Vol. 34, No. 6, pp. 794-800. doi: 10.1016/j.cemconcomp.2012.02.012.
  20. Hou, T. C. and Lynch, J. P. (2005). "Conductivity-based strain monitoring and damage characterization of fiber reinforced cementitious structural components." Smart Structures and Materials, pp. 419-429.
  21. Kim, D. J., El-Tawil, S. and Naaman, A. (2010). "Effect of matrix strength on pullout behavior of high-strength deformed steel fibers." Vol. 272, ACI special publication, pp. 135-150.
  22. Kim, M. K. and Kim, D. J. (2018). "Electro-mechanical self-sensing response of ultra-high-performance fiber-reinforced concrete in tension Electromechanical response of high performance fiber reinforced cementitinous composites containing milled glass fibers under tension." Materials, Vol. 11, No. 7, pp. 1-18.
  23. Kim, M. K., Kim, D. J. and An, Y. K. (2018). "Electro-mechanical self-sensing response of ultra-high-performance fiber-reinforced concrete in tension." Composites Part B: Engineering, Vol. 134, pp. 254-264. doi: 10.1016/j.compositesb.2017.09.061.
  24. Le, H. V. and Kim, D. J. (2017). "Effect of matrix cracking on electrical resistivity of high performance fiber reinforced cementitious composites in tension." Construction and Building Materials, Vol. 156, pp. 750-760. doi: 10.1016/j.conbuildmat.2017.09.046.
  25. Le, H. V., Moon, D. and Kim, D. J. (2018). "Effects of ageing and storage conditions on the interfacial bond strength of steel fibers in mortars." Construction and Building Materials, Vol. 170, pp. 129-141. https://doi.org/10.1016/j.conbuildmat.2018.03.064
  26. Lee, Y., Kang, S. T. and Kim, J. K. (2010). "Pullout behavior of inclined steel fiber in an ultra high strength cementitious matrix." Construction and Building Materials, Vol. 24, No. 10, pp. 2030-2041. https://doi.org/10.1016/j.conbuildmat.2010.03.009
  27. Naaman, A. E. and Najm, H. (1991). "Bond-slip mechanisms of steel fibers in concrete." ACI Materials Journal, Vol. 88, No. 2, pp. 135-145.
  28. Nguyen, D. L., Song, J., Manathamsombat, C. and Kim, D. J. (2014). "Comparative electromechanical damage-sensing behaviors of six strain-hardening steel fiber-reinforced cementitious composites under direct tension." Composites Part B: Engineering, Vol. 69, pp. 159-168. doi: 10.1016/j.compositesb.2014.09.037.
  29. Park, S. H., Ryu, G. S., Koh, K. T. and Kim, D. J. (2014). "Effect of shrinkage reducing agent on pullout resistance of high-strength steel fibers embedded in ultra-high-performance concrete." Cement and Concrete Composites, Vol. 49, pp. 59-69. doi: 10.1016/j.cemconcomp.2013.12.012.
  30. Peled, A., Torrents, J. M., Mason, T. O., Shah, S. P. and Garboczi, E. J. (2001). "Electrical impedance spectra to monitor damage during tensile loading of cement composites." ACI Materials Journal, Vol. 98, No. 4, pp. 313-322. doi: 10.14359/10400.
  31. Pour-Ghaz, M., Kim, J., Nadukuru, S. S., Connor, S. M., Michalowski, R. L., Bradshaw, A., Green, R. A., Lynch, J. P., Poursaee, A. and Weiss, W. J. (2011). "Using electrical, magnetic and acoustic sensors to detect damage in segmental concrete pipes subjected to permanent ground displacement." Cement & Concrete Composites, Vol. 33, pp. 749-762. https://doi.org/10.1016/j.cemconcomp.2011.04.004
  32. Ranade, R., Zhang, J., Lynch, J. P. and Li, V. C. (2014). "Influence of micro-cracking on the composite resistivity of Engineered Cementitious Composites." Cement and Concrete Research, Vol. 58, pp. 1-12. doi: 10.1016/j.cemconres.2014.01.002.
  33. Shannag, M. J., Brincker, R. and Hansen, W. (1997). "Pullout behavior of steel fibers from cement-based composites." Cement and Concrete Research, Vol. 27, No. 6, pp. 925-936. doi: 10.1016/S0008-8846(97)00061-6.
  34. Shi, Z. Q. and Chung, D. D. L. (1999). "Carbon fiber-reinforced concrete for traffic monitoring and weighing in motion." Cement and Concrete Research, Vol. 29, No. 3, pp. 435-439. doi: 10.1016/S0008-8846(98)00204-X.
  35. Song, J., Nguyen, D. L., Manathamsombat, C. and Kim, D. J. (2015). "Effect of fiber volume content on electromechanical behavior of strain-hardening steel-fiber-reinforced cementitious composites." Journal of Composite Materials, Vol. 49, No. 29, pp. 3621-3634. doi: 10.1177/0021998314568169.
  36. Suryanto, B., McCarter, W. J., Starrs, G. and Ludford-jones, G. V. (2016). "Electrochemical immittance spectroscopy applied to a hybrid PVA/steel fiber engineered cementitious composite." Materials and Design, Vol. 105, No. 5, pp. 179-189. doi: 10.1016/j.matdes.2016.05.037.
  37. Torrents, J. M., Mason, T. O. and Garboczi, E. J. (2000). "Impedance spectra of fiber-reinforced cement-based composites: A modeling approach." Cement and Concrete Research, Vol. 30, No. 4, pp. 585-592. doi: 10.1016/S0008-8846(00)00211-8.
  38. Wang, D., Shi, C., Wu, Z., Xiao J., Huang, Z. and Fang, Z. (2015). "A review on ultra high performance concrete: Part II. Hydration, microstructure and properties." Construction and Building Materials, Vol. 96, pp. 368-377. doi: 10.1016/j.conbuildmat.2015.08.095.
  39. Wen, S. and Chung, D. D. L. (2003). "A comparative study of steeland carbon-fiber cement as piezoresistive strain sensors." Advances in Cement Research, Vol. 15, No. 3, pp. 119-128. https://doi.org/10.1680/adcr.2003.15.3.119
  40. Wu, Z., Khayat, K. H. and Shi, C. (2018). "How do fiber shape and matrix composition affect fiber pullout behavior and flexural properties of UHPC?." Cement and Concrete Composites, Vol. 90, pp. 193-201. doi: 10.1016/j.cemconcomp.2018.03.021.
  41. Yoo, D. Y., You, I. and Lee, S. J. (2017). "Electrical properties of cement-based composites with carbon nanotubes, graphene, and graphite nanofibers." Sensors, Vol. 17 No. 5, pp. 1-13. doi: 10.3390/s17051064.