Browse > Article
http://dx.doi.org/10.12989/sem.2020.76.2.153

Effect of material mechanical differences on shear properties of contact zone composite samples: Experimental and numerical studies  

Wang, Weiqi (School of Resources and Environmental Engineering, Wuhan University of Science and Technology)
Ye, Yicheng (School of Resources and Environmental Engineering, Wuhan University of Science and Technology)
Wang, Qihu (School of Resources and Environmental Engineering, Wuhan University of Science and Technology)
Liu, Xiaoyun (School of Resources and Environmental Engineering, Wuhan University of Science and Technology)
Yang, Fan (School of Resources and Environmental Engineering, Wuhan University of Science and Technology)
Tan, Wenkan (School of Resources and Environmental Engineering, Wuhan University of Science and Technology)
Publication Information
Structural Engineering and Mechanics / v.76, no.2, 2020 , pp. 153-162 More about this Journal
Abstract
Aiming at the mechanical and structural characteristics of the contact zone composite rock, the shear tests and numerical studies were carried out. The effects of the differences in mechanical properties of different materials and the normal stress on shear properties of contact zone composite samples were analyzed from a macro-meso level. The results show that the composite samples have high shear strength, and the interface of different materials has strong adhesion. The differences in mechanical properties of materials weakens the shear strength and increase the shear brittleness of the sample, while normal stress will inhibit these effect. Under low/high normal stress, the sample show two failure modes, at the meso-damage level: elastic-shearing-frictional sliding and elastic-extrusion wear. This is mainly controlled by the contact and friction state of the material after damage. The secondary failure of undulating structure under normal-shear stress is the nature of extrusion wear, which is positively correlated to the normal stress and the degree of difference in mechanical properties of different materials. The increase of the mechanical difference of the sample will enhance the shear brittleness under lower normal stress and the shear interaction under higher normal stress.
Keywords
contact zone composite rock; difference in mechanical properties; contact interface; shear properties; failure mode;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Ajalloeian, R., Moghaddam, B. and Azimian, A. (2017), "Prediction of rock mass squeezing of T4 tunnel in Iran", Geotech. Geol. Eng., 35(2), 747-763. https://doi.org/10.1007/S10706-016-0139-Y.   DOI
2 Amann, F., Button, E.A., Evans, K.F., Gischig, V.S. and Blumel, M. (2011), "Experimental study of the brittle behavior of clay shale in rapid unconfined compression", Rock Mech. Rock Eng., 44(4), 415-430. https://doi.org/10.1007/s00603-011-0156-3.   DOI
3 Andjelkovic, V., Pavlovic, N., Lazarevic, Z. and Nedovic, V. (2015), "Modelling of shear characteristics at the concrete-rock mass interface", Int. J. Rock Mech. Min. Sci., 76, 222-236. http://dx.doi.org/10.1016/j.ijrmms.2015.03.024.   DOI
4 Antonellini, M., Nannoni, A., Vigna, B. and Waele, J.D. (2019), "Structural control on karst water circulation and speleogenesis in alithological contact zone: The Bossea cave system (Western Alps, Italy)", Geomorphology., 345, 1-21. https://doi.org/10.1016/j.geomorph.2019.07.019.
5 Atapour, H. and Moosavi, M. (2013), "Some Effects of Shearing Velocity on the Shear Stress-Deformation Behaviour of Hard- Soft Artificial Material Interfaces", Geotech. Geol. Eng., 31(5), 1603-1615. http://dx.doi.org/10.1007/s10706-013-9687-6.   DOI
6 Bahaadini, M., Sharrock, G. and Hebblewhite, B. (2013), "Numerical direct shear tests to model the shear behaviour of rock joints", Comput. Geotech., 51, 101-115. https://doi.org/10.1016/j.compgeo.2013.02.003.   DOI
7 Bista, D., Sas, G., Johansson, F. and Lia, L. (2020), "Influence of location of large-scale asperity on shear strength of concrete-rock interface under eccentric load", J. Rock Mech. Geotech. Eng., https://doi.org/10.1016/j.jrmge.2020.01.001.
8 Cawood, A.J. and Bond, C.E. (2018), "3D mechanical stratigraphy of a deformed multi-layer: Linking sedimentary architecture and strain partitioning", J. Struct. Geol., 106, 54-69. https://doi.org/10.1016/j.jsg.2017.11.011.   DOI
9 Champagne, K., Rivard, P. and Quirion, M. (2013), "Parametres de resistance au cisaillement associes aux discontinuites des barrages en beton du Quebec", Annual Conference of Canadian Dam Association, Montreal, Quebec, Canada.
10 Khazaei, C., Hazzard, J. and Chalaturnyk, R. (2015), "Damage quantification of intact rocks using acoustic emission energies recorded during uniaxial compression test and discrete element modeling", Comput. Geotech., 67, 94-102. https://doi.org/10.1016/j.compgeo.2015.02.012.   DOI
11 Koupouli, N.J.F., Belem, T., Rivard, P. and Effenguet, H. (2016), "Direct shear tests on cemented paste backfill-rock wall and cemented paste backfill-backfill interfaces", J. Rock Mech. Geotech. Eng., 8(4), 472-479. http://dx.doi.org/10.1016/j.jrmge.2016.02.001.   DOI
12 Krounis, A., Johansson, F. and Larsson, S. (2015), "Effects of spatial variation in cohesion over the concrete-rock interface on dam sliding stability", J. Rock Mech. Geotech. Eng., 7(6), 659-667. http://dx.doi.org/10.1016/j.jrmge.2015.08.005.   DOI
13 Douma, L.A.N.R., Regelink, J.A., Bertotti, G., Boersma, Q.D. and Barnhoorn, A. (2019), "The mechanical contrast between layers controls fracture containment in layered rocks", J. Struct. Geolo., 127, 1-11. https://doi.org/10.1016/j.jsg.2019.06.015.
14 Panda, M.K., Mohanty, S., Pingua, B.M.P. and Mishra, A.K. (2014), "Engineering geological and geotechnical investigations along the head race tunnel in Teesta Stage-III hydroelectric project, India", Eng. Geol., 181, 297-308. http://dx.doi.org/10.1016/j.enggeo.2014.08.022.   DOI
15 Pirzada, M.A., Roshan, H., Sun, H., Oh, J., Andersen, M.S., Hedayat, A. and Bahaaddini, M. (2020), "Effect of contact surface area on frictional behaviour of dry and saturated rock joints", J. Struct. Geol., 135, 1-12. https://doi.org/10.1016/j.jsg.2020.104044.
16 Renaud, S., Bouaanani, N. and Miquel, B. (2016), "Critical appraisal of common simplified assumptions in seismic stability analyses of gravity dams", J. Perform. Constr. Facil., 30(5), 04016017. http://dx.doi.org/10.1061/(ASCE)CF.1943-5509.0000843.   DOI
17 Tian, Y.C., Liu, Q.S., Ma, H., Liu, Q. and Deng, P.H. (2018), "New peak shear strength model for cement filled rock joints", Eng. Geol., 233, 269-280. https://doi.org/10.1016/j.enggeo.2017.12.021.   DOI
18 Wang, W.Q., Ye, Y.C., Wang, Q.H., Liu, X.Y., Yuan, Z.H. and Li, P.C. (2020), "Effects of differences in mechanical parameters of media on mechanical properties and failure form of composite samples", KSCE. J. Civ. Eng., 24(2), 424-434. https://doi.org/10.1007/s12205-020-1021-2.   DOI
19 Yassaghi, A. and Salari-Rad, H. (2005), "Squeezing rock conditions at an igneous contact zone in the Taloun tunnels, Tehran-Shomal freeway, Iran: a case study", Int. J. Rock Mech. Min. Sci., 42(1), 95-108. https://doi.org/10.1016/j.ijrmms.2004.07.002.   DOI
20 Liu, Y., Ye, Y.C., Wang, Q.H. and Wang, W.Q. (2020), "Experimental Research on Shear Failure Monitoring of Composite Rocks Using Piezoelectric Active Sensing Approach", Sensors., 20(5), 1-17. http://dx.doi.org/10.3390/s20051376.   DOI
21 Krounis, A., Johansson, F. and Larsson, S. (2016), "Shear strength of partially bonded concrete-rock interfaces for application in dam stability analyses", Rock Mech. Rock Eng., 49(7), 2711-2722. https://doi.org/10.1007/s00603-016-0962-8.   DOI
22 Li, W.F., Bai, J.B., Cheng, J.Y., Peng, S. and Liu, H.L. (2015), "Determination of coal-rock interface strength by laboratory direct shear tests under constant normal load", Int. J. Rock Mech. Min. Sci., 77, 60-67. http://dx.doi.org/10.1016/j.ijrmms.2015.03.033.   DOI
23 Lee, J.S., Han, W., Kim, S.Y. and Byun, Y.H. (2020), "Shear strength and interface friction characteristics of expandable foam grout", Constr. Build. Mater., 249, 1-10. https://doi.org/10.1016/j.conbuildmat.2020.118719.
24 Moradian, Z.A., Ballivy, G. and Rivard, P. (2012), "Application of acoustic emission for monitoring shear behavior of bonded concrete-rock joints under direct shear test", Can. J. Civ. Eng., 39(8), 887-896. https://doi.org/10.1139/L2012-073.   DOI
25 Shen, Y.J., Wang, Y.Z., Yang, Y., Sun, Q., Luo, T. and Zhang, H. (2019), "Influence of surface roughness and hydrophilicity on bonding strength of concrete-rock interface", Constr. Build. Mater., 213, 156-166. https://doi.org/10.1016/j.conbuildmat.2019.04.078.   DOI
26 Renaud, S., Saichi, T., Bouaanani, N., Miquel, B., Quirion, M. and Rivard, P. (2019), "Roughness effects on the shear strength of concrete and rock joints in dams based on experimental data", Rock Mech. Rock Eng., 52(10), 3867-3888. https://doi.org/10.1007/s00603-019-01803-x.   DOI
27 Saiang, D., Malmgren, L. and Nordlund, E. (2005), "Laboratory tests on shotcrete-rock joints in direct shear, tension and compression", Rock Mech. Rock Eng., 38(4), 275-297. http://dx.doi.org/10.1007/s00603-005-0055-6.   DOI
28 Sarfarazi, V., Haeri, H. and Khaloo, A. (2016), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concr., 17(6), 723-737. https://doi.org/10.12989/CAC.2016.17.6.723.   DOI
29 Tian, H.M., Chen, W.Z., Yang, D.S. and Yang, J.P. (2015), "Experimental and numerical analysis of the shear behaviour of cemented concrete-rock joints", Rock Mech. Rock Eng., 48(1), 213-222. https://doi.org/0.1007/s00603-014-0560-6.   DOI
30 Wang, W.Q., Ye, Y.C., Wang, Q.H., Luo, B.Y., Wang, J. and Liu, Y. (2020), "Interaction and mechanical effect of materials interface of contact zone composite samples: Uniaxial compression experimental and numerical studies", Geomech. Eng., 21(6), 571-582. https://doi.org/10.12989/gae.2020.21.6.571.   DOI
31 Wu, Q., Xu, Y.J., Tang, H.M., Fang, K., Jiang, Y.F., Liu, C.Y., Wang, L.Q., Wang, X.H. and Kang, J.T. (2018), "Investigation on the shear properties of discontinuities at the interface between different rock types in the Badong formation, China", Eng. Geol., 245, 280-291. https://doi.org/10.1016/j.enggeo.2018.09.002.   DOI
32 Xia, L., Zeng, Y.W., Luo, R. and Liu, W. (2018), "Influence of bedding planes on the mechanical characteristics and fracture pattern of transversely isotropic rocks in direct shear tests", Shock Vib., 2018, 1-14. https://doi.org/10.1155/2018/6479031.
33 Xing, Y., Kulatilake, P.H.S.W. and Sandbak, L.A. (2019), "Stability Assessment and Support Design for Underground Tunnels Located in Complex Geologies and Subjected to Engineering Activities: Case Study", Int. J. Geomech., 19(5), 1-9. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001402.
34 Yang, S.Q., Tao, Y., Xu, P. and Chen, M. (2019), "Large-scale model experiment and numerical simulation on convergence deformation of tunnel excavating in composite strata", Tunn. Undergr. Sp. Technol., 94, 1-18. https://doi.org/10.1016/j.tust.2019.103133.
35 Zhang, Q.Y., Ren, M.Y., Duan, K., Wang, W.S., Gao, Q., Lin, H.X., Xiang, W. and Jiao, Y.Y. (2019), "Geo-mechanical model test on the collaborative bearing effect of rock-support system for deep tunnel in complicated rock strata", Tunn. Undergr. Sp. Technol., 91, 103001. https://doi.org/10.1016/j.tust.2019.103001.   DOI
36 Zhao, W.S., Chen, W.Z. and Zhao, K. (2018), "Laboratory test on foamed concrete-rock joints in direct shear", Constr. Build. Mater., 173, 69-80. https://doi.org/10.1016/j.conbuildmat.2018.04.006.   DOI
37 Haeri, H., Sarfarazi, V., Zhu, Z., Hokmabadi, N. N., Moshrefifar, M. and Hedayat, A. (2019), "Shear behavior of non-persistent joints in concrete and gypsum specimens using combined experimental and numerical approaches", Struct. Eng. Mech., 69(2), 221-230. https://doi.org/10.12989/SEM.2019.69.2.221.   DOI
38 Feng, W.K., Huang, R.Q. and Li, T.B. (2012), "Deformation analysis of a soft-hard rock contact zone surrounding a tunnel", Tunn. Undergr. Sp. Technol., 32, 190-197. http://dx.doi.org/10.1016/j.tust.2012.06.011.   DOI
39 Ghazvinian, A.H., Taghichian, A., Hashemi, M. and Mar'ashi, S.A. (2010), "The shear behavior of bedding planes of weakness between two different rock types with high strength difference", Rock Mech. Rock Eng., 43(1), 69-87. http://dx.doi.org/10.1007/s00603-009-0030-8.   DOI
40 Haeri, H., Sarfarazi, V. and Zhu, Z. (2018), "Numerical simulation of the effect of bedding layer geometrical properties on the punch shear test using PFC3D", Struct. Eng. Mech., 68(4), 507-517. https://doi.org/10.12989/SEM.2018.68.4.507.   DOI
41 Hu, B., Yang, S.Q., Xu, P. and Cheng, J.L. (2019), "Cyclic loading-unloading creep behavior of composite layered specimens", Acta Geophys., 67(2), 449-464. https://doi.org/10.1007/s11600-019-00261-x.   DOI
42 Huang, C.C., Yang, W.D., Duan, K., Fang L.D., Wang L. and Bo, C.J. (2019), "Mechanical behaviors of the brittle rock-like specimens with multi-non-persistent joints under uniaxial compression", Constr. Build. Mater., 220, 426-443. https://doi.org/10.1016/j.conbuildmat.2019.05.159.   DOI
43 Muller, C., Fruhwirt, T., Haase, D., Schlegel, R. and Konietzky, Heinz. (2018), "Modeling deformation and damage of rock salt using the discrete element method", Int. J. Rock Mech. Min. Sci., 103, 230-241. https://doi.org/10.1016/j.ijrmms.2018.01.022.   DOI
44 Moradian, Z.A., Ballivy, G., Rivard, P., Gravel, C. and Rousseau, B. (2010), "Evaluating damage during shear tests of rock joints using acoustic emissions", Int. J. Rock Mech. Min. Sci., 47(4), 590-598. https://doi.org/10.1016/j.ijrmms.2010.01.004.   DOI
45 Mouzannar, H., Bost, M., Leroux, M. and Virely, D. (2017), "Experimental study of the shear strength of bonded concrete- rock interfaces: surface morphology and scale effect", Rock Mech. Rock Eng., 50(10), 2601-2625. https://doi.org/10.1007/s00603-017-1259-2.   DOI