• Title/Summary/Keyword: integrator

Search Result 472, Processing Time 0.026 seconds

Active Damping Method Using Grid-Side Current Feedback for Active Power Filters with LCL Filters

  • Tang, Shiying;Peng, Li;Kang, Yong
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.311-318
    • /
    • 2011
  • LCL filters installed at converter outputs offer a higher harmonic attenuation than L filters. However, as a three order resonant circuit, it is difficult to stabilize and has a risk of oscillating with the power grid. Therefore, careful design is required to damp LCL resonance. Compared to a passive damping method, an active damping method is a more attractive solution for this problem, since it avoids extra power losses. In this paper, the damping capabilities of capacitor current, capacitor voltage, and grid-side current feedback methods, are analyzed under the discrete-time state-space model. Theoretical analysis shows that the grid-side current feedback method is more suitable for use in active power filters, because it can damp LCL resonance more effectively than the other two methods when the ratio of the resonance and the control frequency is between 0.225 and 0.325. Furthermore, since there is no need for extra sensors for additional states measurements, this method provides a cost-efficient solution. To support the theoretical analysis, the proposed method is tested on a 7-kVA single-phase shunt active power filter.

Dead time Compensation of Single-phase Grid-connected Inverter Using SOGI (SOGI를 이용한 단상 계통연계형 인버터의 데드타임 보상)

  • Seong, Ui-Seok;Lee, Jae-Suk;Hwang, Seon-Hwan;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.166-174
    • /
    • 2017
  • This study proposes a compensation method for the dead-time effects on a single-phase grid-connected inverter. Dead time should be considered in the pulse-width modulation gating signals to prevent the simultaneous conduction of switching devices, considering that a switching device has a finite switching time. Consequently, the output current of the grid-connected inverter contains odd-numbered harmonics because of the dead time and the nonlinear characteristics of the switching devices. The effects of dead time on output voltage and current are analyzed in this study. A new compensation algorithm based on second-order generalized integrator is also proposed to reduce the dead-time effect. Simulation and experimental results validate the effectiveness of the proposed compensation algorithm.

Direct Power Control without Current Sensors for Nine-Switch Inverters

  • Pan, Lei;Zhang, Junru;Wang, Kai;Wang, Beibei;Pang, Yi;Zhu, Lin
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Recently, the nine-switch inverter has been proposed as a dual output inverter. To date, studies on the control strategies for NSIs have been mostly combined with their application. However, in this paper, a mathematical model and control strategy for nine-switch inverters has been proposed in view of the topology. A switching function model and equivalent circuit model of a nine-switch inverter have been built in ${\alpha}{\beta}$ coordinates. Then, a novel current observer with an improved integrator is proposed based on the switching function model, and a direct power control strategy is proposed. No current sensors are used in the proposed strategy, and only two voltage sensors are employed. The performance of the proposed control method is verified by simulation and experimental results.

Development of an Earth Leakage Breaker Operating by Resistive Leakage Current using a Resetable Integrator (적분기를 이용한 저항성 누전전류 작동방식 누전차단기 개발)

  • Ham, Seung-Jin;Hahn, Song-Yop;Koh, Chang-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.917-918
    • /
    • 2007
  • The former earth leakage breaker is operating by total leakage current which is the vector-sum of resistive leakage current and capacitive leakage current. However, the electric disaster like the electric shock and fire is caused mainly by resistive leakage current. Therefore, the earth leakage breaker is ideal when it is operating by resistive leakage current. In this paper, the theory for finding the component of resistive leakage current from total leakage current is suggested and it is embodied to actual circuit. The resistive leakage current can be found by integrating the total leakage current during half cycle of line voltage. Thus, we can simply find resistive leakage current by using OP-AMP integrators, and we can confirm that the resistive leakage current is computed exactly from total leakage current obtained by resistive leakage current and capacitive leakage current. The results that the earth leakage breaker is operating within regular interrupt time are verified when the former earth leakage breaker's controller circuit is replaced by the proposed controller circuit.

  • PDF

6-Axes Articulated Robot Manipulator's Gain Tuning in consideration of dynamic specific (수직 다관절 로봇의 동적 특성을 고려한 Gain Tuning 연구)

  • Chung W.J.;Kim H.G.;Kim K.J.;Kim K.T.;Seo Y.G.;Lee K.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.744-747
    • /
    • 2005
  • This research studied 6-Axes Articulated Robot Manipulator's gain Tuning in consideration of dynamic. First of all, search fur proportional gain of velocity control loop by dynamic signal analyzer. Proportional gain of velocity control loop is connected to dynamic signal analyzer. Next Select free Proportional Gain value. And Select amplitude X of sinusoidal properly so that enough Velocity Feedback Signal may be paid as there is no group to utensil department. Next step, We can get Bode Diagram of Closed loop transfer function response examination in interested frequency. Integral calculus for gain of velocity loop is depended on integral calculus correction's number. We can obtain open loop transfer function by integrator. And we can know bode diagram's special quality from calculated open loop transfer function. With this, Velocity Control Loop's Parameter as inner loop is controlled. Next In moving, when vibration occurs, it controls notch filter. And finally, we have to control fred-forward filter parameter for elevation of control performance.

  • PDF

The Implementation of DDC for the WLAN Receiver (WLAN 수신기를 위한 Digital Down Converter (DDC) 구현)

  • Jeong, Kil-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.2
    • /
    • pp.113-118
    • /
    • 2012
  • In this paper, we discuss the design of the Digital Down Converters for the IEEE 802.11 wireless LAN receiver, which can be used for the customized receiver. The customized receiver can be used for special puropsed services which cannot be realized using the general custom chip. In the OFDM receiver, DDC receives the up sampled Inphase/Quadrature signal from the AD converter and process down sampling and filtering procedures using the Cascaded Intergrator Filter and FIR filters. We discuss the structure and design methodology of DDC's and analyze the simulation results.

Visibility Enhancement of Laccase-Based Time Temperature Integrator Color by Increasing Opacity

  • Kim, Hyun Chul;Cha, Hee Jin;Shin, Dong Un;Koo, Yong Keun;Cho, Hye Won;Lee, Seung Ju
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.2
    • /
    • pp.101-107
    • /
    • 2021
  • Time-temperature integrators (TTIs) based on aqueous enzyme solutions produce transparent colors which lead to difficulty in distinguishing its color change by naked eye. In this present study, this issue has been solved by increasing the opacity of laccase-based TTI without changes in the kinetics (same zero-order reaction) and temperature dependency (similar Arrhenius activation energy values) of the color change. The opacity was increased by introducing TiO2, latex, BaSO4, or ZnO, in combination with a hydrocolloid (xanthan gum, acacia gum, pectin, and CMC) into the TTI system. The combination of TiO2 and xanthan gum was the best. This finding broadened the advantages of laccase-based TTI to more practical uses for consumer convenience.

Analysis of Thrust Misalignments and Offsets of Lateral Center of Gravity Effects on Guidance Performance of a Space Launch Vehicle (추력비정렬 및 횡방향 무게중심 오프셋에 의한 우주발사체 유도 성능 영향성 분석)

  • Song, Eun-Jung;Cho, Sangbum;Sun, Byung-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.8
    • /
    • pp.574-581
    • /
    • 2019
  • This paper investigates the effects of thrust misalignments and offsets of the lateral center of gravity of a space launch vehicle on its guidance performance. Sensitivity analysis and Monte Carlo simulations are applied to analyze their effects by computing changes in orbit injection errors when including the error sources. To compensate their effects, the attitude controller including an integrator additionally and the Steering Misalignment Correction (SMC) routine of the Saturn V are considered, and then Monte Carlo simulations are performed to evaluate their performances.

PLL Control Strategy for ZVRT(Zero Voltage Ride Through) of a Grid-connected Single-phase Inverter (계통연계형 단상 인버터의 ZVRT(Zero Voltage Ride Through)를 위한 PLL 제어 전략)

  • Lee, Tae-Il;Lee, Kyung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.169-180
    • /
    • 2019
  • Grid codes for grid-connected inverters are essential considerations for bulk grid systems. In particular, a low-voltage ride-through (LVRT) function, which can contribute to the grid system's stabilization with the occurrence of voltage sag, is required by such inverters. However, when the grid voltage is under zero-voltage condition due to a grid accident, a zero-voltage ride-through (ZVRT) function is required. Grid-connected inverters typically have phase-locked loop (PLL) control to synchronize the phase of the grid voltage with that of the inverter output. In this study, the LVRT regulations of Germany, the United States, and Japan are analyzed. Then, three major PLL methods of grid-connected single-phase inverters, namely, notch filter-PLL, dq-PLL using an active power filter, and second-order generalized integrator-PLL, are reviewed. The proposed PLL method, which controls inverter output under ZVRT condition, is suggested. The proposed PLL operates better than the three major PLL methods under ZVRT condition in the simulation and experimental tests.

Recent Developments in High Resolution Delta-Sigma Converters

  • Kim, Jaedo;Roh, Jeongjin
    • Journal of Semiconductor Engineering
    • /
    • v.2 no.1
    • /
    • pp.109-118
    • /
    • 2021
  • This review paper describes the overall operating principle of a discrete-time delta-sigma modulator (DTDSM) and a continuous-time delta-sigma modulator (CTDSM) using a switched-capacitor (SC). In addition, research that has solved the problems related to each delta-sigma modulator (DSM) is introduced, and the latest developments are explained. This paper describes the chopper-stabilization technique that mitigates flicker noise, which is crucial for the DSM. In the case of DTDSM, this paper addresses the problems that arise when using SC circuits and explains the importance of the operational transconductance amplifier performance of the first integrator of the DSM. In the case of CTDSM, research that has reduced power consumption, and addresses the problems of clock jitter and excess loop delay is described. The recent developments of the analog front end, which have become important due to the increasing use of wireless sensors, is also described. In addition, this paper presents the advantages and disadvantages of the three-opamp instrumentation amplifier (IA), current feedback IA (CFIA), resistive feedback IA, and capacitively coupled IA (CCIA) methods for implementing instrumentation amplifiers in AFEs.