수직 다관절 로봇의 동적 특성을 고려한 Gain Tuning 연구

김효곤^{*}(창원대학교 대학원 기계설계공학과), 정원지(창원대학교 기계설계공학과), 김기정(창원대학교 대학원 기계설계공학과), 김규탁(창원대학교 전기공학과), 서영교(두산메카텍㈜), 이기상(엘피시스)

6-Axes Articulated Robot Manipulator's Gain Tuning in consideration of dynamic specific

W. J. Chung(Mecha. Design. Eng. Dept. CNU), H. G. Kim(Mecha. Design. Eng. Dept. CNU),
K. J. Kim(Mecha. Design. Eng. Dept. CNU), K. T. Kim(Mecha. Design. Eng. Dept. CNU),
Y. G. Seo(Doosan Mecatec Co., Ltd.), K. S.Lee(LPSIS)

ABSTRACT

This research studied 6-Axes Articulated Robot Manipulator's gain Tuning in consideration of dynamic. First of all, search for proportional gain of velocity control loop by dynamic signal analyzer. Proportional gain of velocity control loop is connected to dynamic signal analyzer. Next Select free Proportional Gain value. And Select amplitude X of sinusoidal properly so that enough Velocity Feedback Signal may be paid as there is no group to utensil department. Next step, We can get Bode Diagram of Closed loop transfer function response examination in interested frequency. Integral calculus for gain of velocity loop is depended on integral calculus correction's number. We can obtain open loop transfer function by integrator. And we can know bode diagram's special quality from calculated open loop transfer function. With this, Velocity Control Loop's Parameter as inner loop is controlled. Next in moving, when vibration occurs, it controls notch filter.And finally, we have to control feed-forward filter parameter for elevation of control performance.

Key Words : 수직 다관절 로봇, Gain Tuning, Dynamic Signal Analyzer, Servo Parameter Tuning, Position Control Loop Tuning, Notch Filter Tuning

1. 서론

최근 산업용 로봇의 수요와 적용 범위의 증가에 따라 산업 전반에 걸쳐 사용되는 로봇은 고성능화 가 요구된다. 특히 산업용 6 축 수직 다관절 로봇은 전자제품을 조립하는 직교 좌표형 로봇이나 SCARA(Selective Compliance Assembly Robot Arm)로 봇과 달리 로봇의 위치와 자세에 따라 기구부의 동 적 특성이 크게 변하게 된다.

대부분의 산업용 로봇의 경우 위치제어기는 기 능상으로 주제어시스템으로부터 로봇 몸체의 동작 명령을 받고, 로봇 몸체의 실제 위치 즉 모터의 실 제 위치와의 차이에 대해서 PID(Proportional Integral Derivative) 제어 방법을 적용하여 그 결과를 모터 제어기에 입력하는 기능을 담당한다. PID Gain Tuning 을 통해 정확한 위치 제어는 물론 로봇의 진 동 현상을 줄일 수 있다. 이동 속도가 빠를수록 프 로그램에 의해 교시된 경로를 크게 벗어나는 현상 이 발생하고 속도 변화에 따라 기구부의 진동이 발 생한다. 그리고 특이점 부근에서는 모터에 과부하 가 발생하여 원하는 움직임을 구현하는데 애로사항 이 많다. 이런 문제점을 해결하기 위해서는 로봇의 동적 특성을 파악하고 제어기의 PID Gain 값을 특성 에 맞게 설정해야 한다. 먼저 Velocity Control Loop 의 Proportional Gain 은 Dynamic Signal Analyzer 를 Velocity Control Loop 에 연결한 후 임의의 Proportional Gain 값을 설정하고 기구부에 무리가 없으면서 충분한 Velocity Feedback Signal 이 나오도 록 Sinusoidal wave 의 진폭 X 를 적절하게 선택한 후 관심 있는 주파수 영역 내에서 응답시험을 통하 여 Closed Loop Transfer Function 의 Bode Diagram 을 얻을 수 있다. Velocity Loop 의 적분 Gain 은 적분 시정수에 의해 결정되는데 적분기에 의한 Open Loop Transfer Function 을 구할 수 있고 계산된 Open Loop Transfer Function 으로부터 Bode Diagram 특성을 알 수 있다. 이와 같이 Inner Loop 인 Velocity Control Loop 의 Parameter 를 조정한 후, 이동 중에 진동이 발생할 경우 Notch Filter 를 조정한다. 그리 고 마지막으로 제어성능의 향상을 위해 Feedforward Filter Parameter 를 조정한다.

2. Servo Parameter Tuning

2.1 Velocity Control Loop Tuning

2.1.1 Proportional Gain

Velocity Control Loop 의 Proportional Gain 은 Dynamic Signal Analyzer 를 Velocity Control Loop 에 연결한 후 임의의 Proportional Gain 값을 설정하고 Sinusoidal wave 의 진폭 X를 적절하게 선택한 후 관 심 있는 주파수 영역(10Hz~500Hz)내에서 응답시험 을 통하여 Closed Loop Transfer Function 의 Bode Diagram 을 얻을 수 있다.

Fig. 1 HP 35665A Dual channel Dynamic Signal Analyzer

Closed Loop Transfer Function $G_c(s)$ 와 Open Loop Transfer Function $G_o(s)$ 사이의 관계 는 식(1)과 같다.

$$G_{\rho}(s) = \frac{G_{\rho}(s)}{1 - G_{\rho}(s)} \tag{1}$$

Dynamic Signal Analyzer 의 함수기능을 사용하면 Fig. 2 와 같이 Open Loop Bode Plot 로 쉽게 변환이 된다.

Fig. 2 Open Loop Bode Plot

일반적으로 Gain Margin 은 -6db ~ -20db 로 사이에 Phase Margin 은 45 도 이상이 되도록 Proportional Gain 을 조정한다. 예를 들어 Proportional Gain 이 K_{ν} 인 경우 Gain Margin -25db 이 되고 Gain Margin 을 -6db 이 되도록 새로운 K_{ν} 을 구하는 계산식은 아래와 같다.

$$20\log x = (-6db) - (-25db), \qquad (2)$$
$$x = 10^{\frac{-6-(-25)}{20}}, \qquad (3)$$
$$K'_{y} = xK_{y} \qquad (4)$$

2.1.2 적분 시정수 결정

Velocity Loop 의 적분 Gain 은 적분 시정수에 의 해 결정되는데 아래의 Block Diagram 을 통해 적분 기에 의한 Open Loop Transfer Function 을 구할 수 있고 계산된 Open Loop Transfer Function 으로부터 Bode Diagram 특성을 알 수 있다.

Fig. 3 Open Loop Block Diagram in addition to an integrating factor.

$$\mathcal{G}_{vo} = \frac{Y}{X} = \left(\frac{K_i}{s} + K_v\right) = K_v \left(\frac{\frac{K_v}{K_i}s + 1}{\frac{K_v}{K_i}s}\right) = K_v \left(\frac{T_i s + 1}{T_i s}\right)$$
(5)

아래 그림에서 보는 바와 같이 적분기에 의한 Open Loop Transfer Function $\frac{T_i s+1}{T_i s}$ 의 Bode Diagram 특성은 적분 시정수 $\frac{1}{T_i}$ 의 10 배가 되는 지점에서 Phase 는 0 에 가까워지므로 적분기를 사용하여도 Phase Margin 이 변하지 않도록 Phase Margin 이 계 산된 지점(Gain Cross Over Frequency)의 <u>1</u>0 되는 10 지점에 적분기의 시정수가 있도록 한다.

Fig. 4 Bode Diagram of Open Loop Transfer Function

따라서 Velocity Loop 의 적분 시정수는 Proportional Gain 조정시에 얻은 Phase Margin 이 변 하지 않도록 Gain Cross Over Frequency 의 $\frac{1}{10}$ 되는 지점을 적분시정수로 정하였다.

2.2 Position Control Loop Tuning

Velocity Loop 의 Proportional Gain 을 조정하기 위해 추출된 Closed Loop Transfer Function 의 Bode Diagram 으로부터 Magnitude 가 -3dB 되는 지점이 Position Loop 에 유효한 Velocity Loop 의 Bandwidth(Cut-Off Frequency)가 된다. 아래 그림은 기구부 강성이 낮을 경우에 기구부 공진주파수보다 작은 지점이 속도 Loop 의 Bandwidth 로 지정되어 지는 것을 나타낸다.

Fig. 5 Bode Diagram of Closed Loop Transfer Function

위에서 얻은 Velocity Loop 의 Cut-off Frequency 로 Velocity Loop 의 Transfer Function 을 아래의 Block Diagram 과 같이 1차 시스템으로 근사화 시키면,

Fig. 6 Bode Diagram of Closed Loop Transfer Function

$$G_{p}(s) = \frac{\frac{2\pi f_{c}K_{p}}{s(s+2\pi f_{c})}}{1+\frac{2\pi f_{c}K_{p}}{s(s+2\pi f_{c})}} = \frac{2\pi f_{c}K_{p}}{s^{2}+2\pi f_{c}s+2\pi f_{c}K_{p}} = \frac{\omega^{2}}{s^{2}+2\varsigma\omega s+\omega^{2}}$$
(6)

식(6)과 같이 Position Loop 의 Transfer Function 을 구할 수 있다. 여기서 $G\omega = \pi f_c$ 이고, $\omega^2 = 2\pi f_c K_p$ 이므로 Position Control Loop 의 Damping Ratio 인 G 가 결정 되면 Proportional Gain 인 K_p 와 Bandwidth f 는 다음과 같이 계산할 수 있다.

$$K_p = \frac{\pi f_c}{2\varsigma^2}$$
이고, $f = \frac{\omega}{2\pi} = \frac{f_c}{2\varsigma}$ 의 관계식이 성립되

며. 주어진 Tolerance Band 에 따른 Settling Time 은 Position Control Loop 의 Damping Ratio 와 Bandwidth 사이에 다음과 같은 관계를 가지고 있다. Unit Step Input 에 대한 Settling Time t_s 는 몇 % Tolerance Band 인가에 따라 다음과 같은 식이 성립 된다.

$$t_s = nT = n\left(\frac{1}{\varsigma\omega}\right) = n\left(\frac{1}{2\pi\varsigma f}\right)$$
 or \mathbb{P} , 2% Tolerance

Band 일 때 *n* 은 4 이고 5%일 때 3 이 된다. 여기 서 Settling time 은 Damping Ratio 와 Linear Dependency 관계가 존재하지 않고 몇 % Tolerance Band 인가에 따라 최적인 Damping Ratio 가 다르다. 예를 들어 2% Tolerance Band 일 때는 Damping Ratio 가 0.35, 0.68 또는 0.76 일 때 Settling Time 이 가장 짧으며 5% Tolerance Band 일 때는 Damping Ratio 가 0.38, 0.57, 0.69, 또는 0.82 일 때 Settling Time 이 가 장 짧다. 따라서 주어진 Settling Time 조건에 따라 최적인 Damping Ratio 는 실험을 통해 얻는다.

3. 제어성능 향상 방안 3.1 Notch Filter Tuning

$$\frac{\omega_{M}(s)}{T_{M}(s)} = \frac{s\theta_{M}(s)}{T_{M}(s)}$$

=
$$\frac{J_{L}s^{2} + B_{L}s + K}{J_{M}J_{L}s^{3} + (J_{M}B_{L} + J_{L}B_{M} + B_{M}B_{L})s^{2} + (J_{M} + J_{L})Ks + (B_{M} + B_{L})Ks}$$

식 (7)은 로봇의 축에 대한 전달함수이다. 기구부 의 공진 Pole 은 제어 Loop 안에서 Complex Conjugate Zero 로 나타나고 (7)식에 대하여 Bode Diagram 은 Magnitude 가 급격히 줄어들고 Phase 가 급격히 상승하는 오목한 모양을 보인다.

Table 1 value of parameter			
Parameter	Value	Parameter	Value
$J_{_M}$	0.2	J_{L}	1.0
B_{M}	0.2	B_L	0.2
K	100		

Table 1 Value of parameter

제어 Loop 을 구성하여 Bode Diagram 을 Closed Loop Transfer Function 에 대해서 그려보면 아래와 같이 Magnitude Plot 에서도 Magnitude 가 급격히 줄 어 들었다가 다시 증가하는 부위를 볼 수 있다.

Fig. 7 Bode plot of closed loop transfer function

위의 그림과 같이 추출된 Closed Loop Transfer Function 의 Bode Plot 으로부터 첫번째 반공진점이 f_a 에 있으면 아래 식의 분자항에 있는 Notch.Filter 의 Zero Frequency $f_z = f_z = 0.9 f_a$ 로 놓고, f_p 를 $f_p = 3f_z$, 고 $\varsigma_p = 0.8$ 로 고정해 놓고 시행 착오적인 실험을 통하여 ς_z 를 조금씩 변화시켜 잔 류진동이 없는 최적값을 구한다.

$$\frac{N(s)}{D(s)} = \frac{(s^2 + 2\varsigma_x s + \omega_x^2)\omega_p^2}{(s^2 + 2\varsigma_y s + \omega_x^2)\omega_x^2}$$
(8)
(9)

여기서 $\omega_z = 2\pi f_z$, $\omega_p = 2\pi f_p$ 이다.

3.2 Feed-forward Filter Tuning

위치 제어 Loop 의 Transfer Function

 $G_p(s) = \frac{1}{T_p s + 1}$, 여기서 $T_p = 시정수$ (Time

Constant)) 은 1 차 시스템이 위치 지령 입력 x(t) = Vt을 추종한다고 가정할 때 Steady State

Following Error 는 식(10),(11)과 같이 계산할 수 있다.

$$E(s) = X(s) - Y(s) = \frac{V}{s^2} - \frac{1}{T_p s + 1} \frac{V}{s^2} = \frac{V}{s^2} \left(\frac{T_p s}{T_p s + 1}\right) = \frac{V}{s} \left(\frac{T_p}{T_p s + 1}\right)$$
(10)
$$\lim_{t \to \infty} (e(t)) = \lim_{s \to 0} (sE(s)) = \lim_{s \to 0} \left(\frac{VT_p}{T_p s + 1}\right) = VT_p$$
(11)

Steady State Following Error 를 줄이기 위해 Servo 시스템의 Stability Margin 을 유지하면서, 위치 제어 Loop 의 Bandwidth 를 키우는 데에는 한계가 있으므 로 Servo 제어 시스템의 안정성에 영향을 주지 않 으면서 시스템의 응답성을 키울 수 있는 Feedforward Filter 를 사용하면 Steady State Following Error 를 대폭 줄여 시스템의 응답성을 크게 개선할 수 있다. Velocity Feed-forward Filter 는 위치지령입력의 속도가 클수록 크게 작용하므로 최고 속도의 등속 구간(가속도가 0 이므로 Acceleration Feed-forward Filter 의 영향이 없는 영역)에서 Following Error 가 최소가 되도록 Gain 의 크기를 조정한 후, 위치지 령입력의 가속도가 존재하는 영역에서만 작용하는 Acceleration Feed-forward 는 가감속시에 Error 가 최 소가 되도록 조정하면 된다. 조정하는 순서는 먼저 Feed-forward Filter 를 조정한 Velocity 후 Acceleration Feed-forward Filter 를 조정한다.

4. 결론

이상의 방법으로 6 축의 PID Gain 값을 모두 찾고 가장 낮은 Gain 값으로 6 축 모두 일치시킬 수 있 으며 각 축의 구동 속도가 맞아지기 때문에 진원과 직선을 무리 없이 그릴 수 있게 된다. 본 연구에서 제시한 방법으로 로봇의 진동현상을 감소 시킬 수 있는 최적의 Gain 값을 제공할 수 있을 것이다.

후 기

본 연구는 한국 과학재단 지정 창원대학교 공작기 계기술연구센터(RRC)의 지원과 산업자원부의 출연 금 등으로 수행한 지역전략산업 석·박사 연구 인 력 양성 사업 및 두산메카텍㈜ 지원으로 수행된 연 구 결과임을 밝힙니다.

참고문헌

- Stefani, Shahian, Savant, Hostetter "Design of Feedback control systems" Oxford, 2001.
- Charles L., Phillips H., Troy Nagle, "Digital control system analysis and design" Prentice Hall, 1994.
- Haugen, Finn(NA), "PID control of dynamic systems" Intl specialized book service inc, 2004.