DOI QR코드

DOI QR Code

Visibility Enhancement of Laccase-Based Time Temperature Integrator Color by Increasing Opacity

  • Kim, Hyun Chul (Department of Food Science and Biotechnology, Dongguk University-Seoul) ;
  • Cha, Hee Jin (Department of Food Science and Biotechnology, Dongguk University-Seoul) ;
  • Shin, Dong Un (Department of Food Science and Biotechnology, Dongguk University-Seoul) ;
  • Koo, Yong Keun (Department of Food Science and Biotechnology, Dongguk University-Seoul) ;
  • Cho, Hye Won (Department of Food Science and Biotechnology, Dongguk University-Seoul) ;
  • Lee, Seung Ju (Department of Food Science and Biotechnology, Dongguk University-Seoul)
  • Received : 2021.08.03
  • Accepted : 2021.08.23
  • Published : 2021.08.31

Abstract

Time-temperature integrators (TTIs) based on aqueous enzyme solutions produce transparent colors which lead to difficulty in distinguishing its color change by naked eye. In this present study, this issue has been solved by increasing the opacity of laccase-based TTI without changes in the kinetics (same zero-order reaction) and temperature dependency (similar Arrhenius activation energy values) of the color change. The opacity was increased by introducing TiO2, latex, BaSO4, or ZnO, in combination with a hydrocolloid (xanthan gum, acacia gum, pectin, and CMC) into the TTI system. The combination of TiO2 and xanthan gum was the best. This finding broadened the advantages of laccase-based TTI to more practical uses for consumer convenience.

Keywords

Acknowledgement

This work was supported by the Dongguk University Research Fund of 2020-21.

References

  1. Taoukis, P. and Labuza, T. 1989. Applicability of time temperature indicators as shelf-life monitors of food products. J. Food Sci. 54: 783-788 https://doi.org/10.1111/j.1365-2621.1989.tb07882.x
  2. Kim, W., Park, E. and Hong, K. 2012b. Development of a time-temperature integrator system using Burkholderia cepacia lipase. Food Sci. Biotechnol. 21: 497-502. https://doi.org/10.1007/s10068-012-0063-8
  3. Pocas, M., Delgado, T. and Oliveira, F. 2008. Smart packag ing technologies for fruits and vegetables. In: Smart Packing Technologies. J. Kerry and P. Butler, (eds.), John Wiley and Sons Inc., New York, USA, pp.151-166.
  4. Kim, K., Kim, E. and Lee, S. 2012c. New enzymetic Timetemperature integrator (TTI) that uses laccase. J. Food Eng. 113: 118-123. https://doi.org/10.1016/j.jfoodeng.2012.05.009
  5. Yan, S., Huawei, C., Limin, Z., Fazheng, R., Luda, Z. and Hengtao, Z. 2008. Development and characterization of a new amylase type time-temperature indicator. Food Control. 19: 315-319. https://doi.org/10.1016/j.foodcont.2007.04.012
  6. Adams, J. and Langley, F. 1998. Nitrophenyl glucoside hydrolysis as a potential time-temperature integrator reaction. Food Chem. 62: 65-68. https://doi.org/10.1016/S0308-8146(97)00143-X
  7. Bobelyn, E., Hertog, M. and Nicolai, B. 2006. Applicability of an enzymatic time temperature integrator as a quality indicator for mushrooms in the distribution chain. Postharvest Biol. Technol. 42: 104-114. https://doi.org/10.1016/j.postharvbio.2006.05.011
  8. Arora, D.S., Chander, M. and Gill, P.K. 2002. Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw. Int. Biodeterior. Biodegrad. 50: 115-120. https://doi.org/10.1016/S0964-8305(02)00064-1
  9. Manole, A., Herea, D., Chiriac, H. and Melnig, V. 2008. Laccase activity determination. Scientific Annals of Alexandru loan Cuza din lasi University. 4: 17-24.
  10. Thurston, C. 1994. The structure and function of fungal laccase. Microbiol. 140: 19-26. https://doi.org/10.1099/13500872-140-1-19
  11. Solis-Oba, M., Alemndariz, J. and Viniegra-Gonzalez, G. 2008. Biotechnological treatment for colorless denim and textile wastewater treatment with laccase and ABTS. Rev. Int. Contam. Ambiental. 24(1): 5-11.
  12. Kim, K., Jung, S., Park, H., Chung, K. and Lee, S. 2012a. Application of a prototype of microbial Time Temperature indicator (TTI) to the prediction of ground beef qualities during storage. Korean J. Food Sci. An. 32: 448-457. https://doi.org/10.5851/kosfa.2012.32.4.448
  13. Ramig, A. 1976. Opacified latex paint containing plastic polymer particles. US Patent 4069186.
  14. Tsirlin, I., Allison, R. and Wilcox, L. 2012. Perceptual asymmetry reveals neural substrates underlying stereoscopic transparency. Vision Res. 54: 1-11. https://doi.org/10.1016/j.visres.2011.11.013
  15. Barbier, G. and Campbell, W. 2005. Viscosity effect on eukaryotic nitrate reductase activity. J. Biol. Chem. 280: 26049-26054. https://doi.org/10.1074/jbc.M409694200
  16. Uribe, S. and Ssampedro, J. 2003. Measuring solution viscosity and its effect on enzyme activity. Biol. Proced. Online. 5: 108-115. https://doi.org/10.1251/bpo52
  17. Anderson, W., Herwitt, P.J. and Spruce, S. 1996. Broad-spectrum physical sunscreens: Titanium dioxide and zinc oxide. In: Sunscreens Development, Evaluation and Regulatory Aspects. 2nd Ed. CRC Press, New York, USA, pp. 353-398.
  18. Ibrahim, G., Hassan, I., Abd-Elrashid, A., El-Massry, K. and Eh-Ghorab, A. 2011. Effect of clouding agents on the quality of apple juice during storage. Food Hydrocolloids. 25: 91-97. https://doi.org/10.1016/j.foodhyd.2010.05.009
  19. Park, H., Kim, K. and Lee, S. 2013. Adjustment of Arrhenius activation energy of laccase-based time-temperature integrator (TTI) using sodium azide. Food Control. 32: 615-620. https://doi.org/10.1016/j.foodcont.2013.01.046
  20. Li, Y., Xu, G., Chen, G. and Wang, K. 1997. Slow pelleting coagulation of MBS latex. Chem. Eng. Res. Des. 75: 81-86. https://doi.org/10.1205/026387697523246
  21. Vallar, S., Houivet, D., Fallah, J.E., Kervadec, D. and Haussonne, J.M. 1999. Oxide slurries stability and powders dispersion: optimization with zeta potential and rheological measurements. J. Eur. Ceram. Soc. 19: 1017-1021. https://doi.org/10.1016/S0955-2219(98)00365-3
  22. Vecer, M. and Pospisil, J. 2012. Stability and Rheology of Aqueous Suspensions. Procedia Eng. 42: 1720-1725. https://doi.org/10.1016/j.proeng.2012.07.564
  23. Desplanques, S., Grisel, M., Malhiac, C. and Renou, F. 2014. Stabilizing effect of acacia gum on the xanthan helical conformation in aqueous solution. Food Hydrocolloids. 35: 181-188. https://doi.org/10.1016/j.foodhyd.2013.05.009
  24. Katzbauer, B. 1998. Properties and applications of xanthan gum. Polym. Degrad. Stab. 59: 81-84. https://doi.org/10.1016/S0141-3910(97)00180-8
  25. Sorbie, K. and Huang, Y. 1992. The effect of pH on the flow behavior of xanthan solution through porous media. J. Colloid Interface Sci. 149: 303-313. https://doi.org/10.1016/0021-9797(92)90421-H
  26. Chibowski, S. and Wisniewska, M. 2002. Study of electrokinetic properties and structure of adsorbed layers of polyacrylic acid and polyacrylamide at Fe2O3-polymer solution interface. Colloids Surf., A. 208: 31-145.
  27. Hunter, R. 1988. Zeta Potential in Colloid Science. Academic Press Inc., London, UK.
  28. Mirhosseini, H., Tan, C.P., Hamid N.S. and Yusof, S. 2008. Effect of Arabic gum, xanthan gum and orange oil contents on ζ-potential, conductivity, stability, size index and pH of orange beverage emulsion. Colloids Surf., A. 315: 47-56. https://doi.org/10.1016/j.colsurfa.2007.07.007
  29. Caron-Charles, M. and Gozlan, J.P. 1996. Improvement of the floc resistance to a centrifugal shear field by polymer adjunction. Chem. Eng. Sci. 51: 4649-4659. https://doi.org/10.1016/0009-2509(96)00304-1
  30. Lerche, T.S.D. 2008. Thickener performance traced by multisample analytical centrifugation. Colloids Surf., A. 331: 114-118. https://doi.org/10.1016/j.colsurfa.2008.05.040
  31. Guyon, E., Hulin, J.P., Petit, L. and Mitescu, C. 2001. Physical Hydrodynamics. Oxford University Press, Oxford, UK.
  32. Al-assaf, S. and Phillips, G.O. 2009. Hydrocolloids: Structure-function relationships. Food Sci. Tech. 23(3): 17-20.
  33. Wang, J. and Somasundaran, P. 2005. Adsorption and conformation of carboxymethyl cellulose at solid-liquid interfaces using spectroscopic, AFM and allied techniques. J. Colloid Interface Sci. 291: 75-83. https://doi.org/10.1016/j.jcis.2005.04.095
  34. Escudier, M.P., Gouldson, I.W., Pereira, A.S., Pinho, F.T. and Poole, R.J. 2001. On the reproducibility of the rheology of shear-thinning liquids. J. Non-Newtonian Fluid Mech. 97: 99-124. https://doi.org/10.1016/S0377-0257(00)00178-6
  35. Montenegro, M.A., Boiero, M.L., Valle, L. and Borsarelli, C.D. 2012. Gum arabic: more than an edible emulsifier. In: Products and Applications of Biopolymers. Verbeek, J. (eds.), InTechOpen, London, UK, pp 1-26.
  36. Chanamai, R.A. and McClements, D.J. 2002. Comparison of gum arabic, modified starch, and whey protein isolate as emulsifiers: Influence of pH, CaCl2 and temperature. J. Food Sci. 67: 120-125. https://doi.org/10.1111/j.1365-2621.2002.tb11370.x
  37. Munoz, J., Rincon, F., Alfaro, M.C., Zapata, I., Fuente, J.D.L., Beltran, O. and Pinto, G.L.D. 2007. Rheological properties and surface tension of Acacia tortuosa. Carbohydr. Polymers. 70: 198-205. https://doi.org/10.1016/j.carbpol.2007.03.018
  38. Chuang, L.Y. and Mezzino, J.F. 1985. Pectin-based clouding agent. US Patent 4529613.
  39. Kohn, R. and Tibenskv, V. 1971. Exchange of calcium, strontium and barium ions on pectin. Collect. Czech. Chem. Commun. 36: 92-100. https://doi.org/10.1135/cccc19710092
  40. Majdoub, H., Roudesli, S., Picton, L., Cerf, D.L., Muller, G. and Grisel, M. 2001. Prickly pear nopals pectin from Opuntia ficus-indica physico-chemical study in dilute and semidilute solutions. Carbohydr. Polym. 46: 69-79. https://doi.org/10.1016/S0144-8617(00)00284-8
  41. Nyman E.G.L. and Svanberg, S. 2002. Modification of physicochemical properties of dietary fibre in carrots by monoand divalent cations. Food Chem. 76: 273-280. https://doi.org/10.1016/S0308-8146(01)00271-0
  42. Wanihsuksombat, C., Hongtrakul, V. and Suppakul, P. 2010. Development and characterization of a prototype of a lactic acid-based time-temperature indicator for monitoring food product quality. J. Food eng. 10: 427-434. https://doi.org/10.1016/j.jfoodeng.2010.04.027