• Title/Summary/Keyword: integrated passive device

Search Result 60, Processing Time 0.037 seconds

Fabrication of High Break-down Voltage MIM Capacitors for IPD Applications

  • Wang, Cong;Kim, Nam-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.241-241
    • /
    • 2009
  • For the Radio Frequency Integrated Passive Device (RFIPD) application, we have successfully developed and characterized high break-down voltage metal-insulator-metal (MIM) capacitors with 2,000 ${\AA}$ plasma-enhanced chemical vapor deposition (PECVD) silicon nitride which deposited with $SiH_4/NH_3$ gas mixing rate, working pressure, and RF power of PECVD at $250^{\circ}C$ chamber temperature. At the PECVD process condition of gas mixing rate (0.957), working pressure (0.9 Torr), and RF power (60 W), the AFM RMS value of about 2,000 ${\AA}$ silicon nitride on the bottom metal was the lowest of 0.862 nm and break-down electric field was the highest of about 8.0 MV/cm with the capacitance density of 326.5 $pF/mm^2$.

  • PDF

Compact Wilkinson Power Combiner Design and Electro Magnetic Simulation Using IPD Technology (IPD 기술을 이용한 Wilkinson 전력결합기 설계 및 전기장 시뮬레이션)

  • Cho, Sung-Jin;Wang, Cong;Kim, Nam-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.46-47
    • /
    • 2009
  • In this paper, a power combiner using IPD process for SK Telecom 3-Generation (2.13 ~ 2.15 GHz) application. The Integrated Passive Device (IPD) Wilkinson power Combiner shows compact size and high performance. It is simulated by 3D Electro Magnetic (EM) simulation because of more accurate measurement result wire-bonding effects. This combiner exhibit size of $1.2mm^2$ the insertion loss of 3.6 dB, and the return loss of 10.1 dB, and isolation of more than -7.7 dB.

  • PDF

A Simple Dual Band Filter Design with 0603 Case Size using IPD Technology for 1.8 GHz and 2.5 GHz DC-block Application

  • Li, De-Zhong;Wang, Cong;Kyung, Gear Inpyo;Kim, Nam-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.385-386
    • /
    • 2008
  • In this paper, a simple dual band filter chip is designed with 0603 case size using IPD technology. The dual-band filter achieves high frequency band at 2.5 GHz and low frequency band at 1.8 GHz. The insertion losses in high frequency band and low frequency band are -0.195 dB and -0.146 dB, respectively. The return losses in these bands are -22.7 dB and -22.8 dB, respectively. The simple dual-band filter based on SI-GaAs substrate is designed within die size of about 1.3 $mm^2$.

  • PDF

Design of Power Divider for IMT-Advances System using GaAs Process (GaAs 공정을 이용한 IMT-Advances System용 전력분배기 설계)

  • Kim, Chang-Gi;Kim, Nam-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.184-184
    • /
    • 2008
  • In this paper, a power divider with a multi-band and broadband are designed and fabricated using an InGaP/GaAs process. The design of this divider is based on multi-band because it is important in the next generation IMT-Advances system. In this design, power divider is fabricated with the frequency of 824 MHz to 894 MHz, 1.8 GHz to 2.2 GHz and 2.3 GHz to 2.4 GH for cellular, personal communication system (PCS) and Wireless Broadband Internet (WiBro). The topology of the designed power divider is based on the multi-section and fabricated using integrated passive device (IPD) library of nanoENS Inc. It is measured using network analyzer.

  • PDF

Phase Control Optimization at Waveguide Crossover and Its Application to 45° Optical Hybrid for Demodulating 8DPSK Optical Signals

  • Jeong, Seok-Hwan
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.711-720
    • /
    • 2021
  • A novel optical hybrid device that doubles the multilevel demodulation resolution by adding the optical interferometer with a waveguide crossover is proposed, theoretically analyzed and experimentally verified. We report two types of all-passive phase control schemes that will be referred to as a phase compensation scheme and a phase optimization scheme. We also apply the proposed phase control schemes to a 45° optical hybrid consisting of two parallel 90° optical hybrids together with the proposed phase control scheme for demodulating 8-level differential phase shift keying optical signals. Octagonal phase response with low wavelength sensitive excess loss of <0.8 dB over 31-nm-wide spectral range will be demonstrated in the InP-based material platform.

S-Parameter Simulation for Trench Structure and Oxide High Dielectric of Trench MIM Capacitor (Trench구조와 산화물 고유전체에 따른 Trench MIM Capacitor S-Parameter 해석)

  • Park, Jung-Rae;Kim, Gu-Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.167-170
    • /
    • 2021
  • Integrated passive device (IPD) technology has emerged with the need for 5G. In order to integrate and miniaturize capacitors inside IPD, various studies are actively performed using high-k materials and trench structures. In this paper, an EM(Electromagnetic) simulation study was performed by applying an oxide dielectric to the capacitors having a various trench type structures. Commercially available materials HfO2, Al2O3, and Ta2O5 are applied to non, circle, trefoil, and quatrefoil type trench structures to confirm changes in each material or structure. As a result, the bigger the capacitor area and the higher dielectric constant of the oxide dielectric, the insertion loss tended to decrease.

Simulations of Fabrication and Characteristics according to Structure Formation in Proposed Shallow Trench Isolation (제안된 얕은 트랜치 격리에서 구조형태에 따른 제작 및 특성의 시뮬레이션)

  • Lee, Yong-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.127-132
    • /
    • 2012
  • In this paper, the edge effects of proposed structure in active region for high voltage in shallow trench isolation for very large integrated MOSFET were simulated. Shallow trench isolation (STI) is a key process component in CMOS technologies because it provides electrical isolation between transistors and transistors. As a simulation results, shallow trench structure were intended to be electric functions of passive, as device dimensions shrink, the electrical characteristics influence of proposed STI structures on the transistor applications become stronger the potential difference electric field and saturation threshold voltage.

Fabrication of Metal-insulator-metal Capacitors with SiNx Thin Films Deposited by Plasma-enhanced Chemical Vapor Deposition

  • Wang, Cong;Kim, Nam-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.5
    • /
    • pp.147-151
    • /
    • 2009
  • For integrated passive device (IPD) applications, we have successfully developed and characterized metalinsulator-metal (MIM) capacitors with 2000 $\AA$ plasma-enhanced chemical vapor deposition (PECVD) silicon nitride which are deposited with the $SiH_4/NH_3$ gas mixing rate, working pressure, and RF power of PECVD at $250^{\circ}C$. Five PECVD process parameters are designed to lower the refractive index and lower the deposition rate of $Si_3N_4$ films for the high breakdown electric field. For the PECVD process condition of gas mixing rate (0.957), working pressure (0.9 Torr), and RF power (60 W), the atomic force microscopy (AFM) root mean square (RMS) value of about 2000 $\AA$ $Si_3N_4$ on the bottom metal is lowest at 0.862 nm and the breakdown electric field is highest at about 8.0 MV/cm with a capacitance density of 326.5 pF/$mm^2$. A pretreatment of metal electrodes is proposed, which can reduce the peeling of nitride in the harsh test environment of heat, pressure, and humidity.

The Cu-CMP's features regarding the additional volume of oxidizer to W-Slurry (W-slurry의 산화제 첨가량에 따른 Cu-CMP특성)

  • Lee, Woo-Sun;Choi, Gwon-Woo;Seo, Young-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.370-373
    • /
    • 2003
  • As the integrated circuit device shrinks to the smaller dimension, the chemical mechanical polishing (CMP) process was required for the global planarization of inter-metal dielectric(IMD) layer with free-defect. However, as the IMD layer gets thinner, micro-scratches are becoming as major defects. Chemical-Mechanical Planarization(CMP) of conductors is a key process in Damascene patterning of advanced interconnect structure. The effect of alternative commerical slurries pads, and post-CMP cleaning alternatives are discuess, with removal rate, scratch dentisty, surface roughness, dishing, erosion and particulate density used as performance metrics. Electroplated copper depostion is a mature process from a historical point of view, but a very young process from a CMP persperspective. While copper electrodepostion has been used and stuidied for dacades, its application to Cu damascene wafer processing is only now ganing complete accptance in the semiconductor industry. The polishing mechanism of Cu CMP process has been reported as the repeated process of passive layer formation by oxidizer and abrasion action by slurry abrasives. however it is important to understand the effect of oxidizer on copper pasivation layer in order to obtain higher removal rate and non-uniformity during Cu-CMP process. In this paper, we investigated the effects of oxidizer on Cu-CMP process regarding the additional volume of oxidizer.

  • PDF