Browse > Article
http://dx.doi.org/10.4313/TEEM.2009.10.5.147

Fabrication of Metal-insulator-metal Capacitors with SiNx Thin Films Deposited by Plasma-enhanced Chemical Vapor Deposition  

Wang, Cong (RFIC Center, Department of Electronic Engineering, Kwangwoon University)
Kim, Nam-Young (RFIC Center, Department of Electronic Engineering, Kwangwoon University)
Publication Information
Transactions on Electrical and Electronic Materials / v.10, no.5, 2009 , pp. 147-151 More about this Journal
Abstract
For integrated passive device (IPD) applications, we have successfully developed and characterized metalinsulator-metal (MIM) capacitors with 2000 $\AA$ plasma-enhanced chemical vapor deposition (PECVD) silicon nitride which are deposited with the $SiH_4/NH_3$ gas mixing rate, working pressure, and RF power of PECVD at $250^{\circ}C$. Five PECVD process parameters are designed to lower the refractive index and lower the deposition rate of $Si_3N_4$ films for the high breakdown electric field. For the PECVD process condition of gas mixing rate (0.957), working pressure (0.9 Torr), and RF power (60 W), the atomic force microscopy (AFM) root mean square (RMS) value of about 2000 $\AA$ $Si_3N_4$ on the bottom metal is lowest at 0.862 nm and the breakdown electric field is highest at about 8.0 MV/cm with a capacitance density of 326.5 pF/$mm^2$. A pretreatment of metal electrodes is proposed, which can reduce the peeling of nitride in the harsh test environment of heat, pressure, and humidity.
Keywords
IPD; MIM capacitor; PECVD; Breakdown electric field; Silicon nitride;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J. G. Tenedorio and P. A. Terizian, IEEE Electron Device Lett. 5, 199 (1984)   DOI   ScienceOn
2 Y. C. Chou, R. Lai, G. P. Li, H. Jun, P. Nam, R. Grundbacher, H. K. Kim, Y. Ra, M. Biedenbender, E. Ahlers, M. Barsky, A. Oki, and D. Streit, IEEE Electron Device Lett. 24, 7 (2003)   DOI   ScienceOn
3 R. T. Yoshioka, L. E. M. de Barros, J. A. Diniz, and J. W. Swart, Int. Microw. Symp., (SBMO/IEEE MTT-S, APS and LEOS-IMOC California, USA, 1999), p. 108   DOI
4 Y. T. Kim, S. M. Cho, H. Y. Lee, H. D. Yoon, and D. H. Yoon, Surf. Coat. Technol. 174, 166 (2003)   DOI   ScienceOn
5 J. Y. Sin, H. D. Park, K. J. Choi, K. W. Lee, J. Y. Lee, and J. W. Hong, Trans. Electr. Electron. Mater. 10, 97 (2009)   과학기술학회마을   DOI   ScienceOn
6 C. J. Sandroff, R. N. Nottenburg, J. C. Bischoff, and R. Bhat, Appl. Phys. Lett. 51, 33 (1987)   DOI
7 A. Kapila, V. Malhotra, L. H. Camnitz, K. L. Seaward, and D. Mars, J. Vac. Sci. Technol. B, 13, 10 (1995)   DOI   ScienceOn
8 T. Matsuo, M. Esashi, and H. Abe, IEEE Trans. Electron Devices, 26, 1939 (1979)   DOI
9 J. Scarpulla, D. Eng, S. Olson, and C. S. Wu, IEEE Int. Rel. Phys. Symp., (IEEE, San Diego, USA, 1999), p. 128
10 C. Wang, C. Qian, G. I. Kyung, B. Shrestha, and N. Y. Kim, IEEE Asia Pac. Microw. Conf., (IEEE, Hong Kong, China, 2008)
11 R. Ulrich and L. Schaper, Integrated Passive Component Technology, (IEEE Press/Wiley, New York, 2003), p. 23
12 H. Y. Li, Y. M. Khoo, N. Khan, K. W. Teoh, V. S. Rao, H. B. Li, E. B. Liao, S. Mohanraj, V. Kripesh, and K. Rakesh, IEEE Electr. Compon. Tech. Conf., (IEEE, Florida, USA, 2008), p. 1709   DOI
13 Y. T. Kim, S. M. Cho, Y. G. Seo, H. D. Yoon, Y. M. Im, S. J. Suh, and D. H. Yoon, Surf. Coat. Technol. 171, 34 (2002)   DOI   ScienceOn
14 E. Y. Chang, G. T. Cibuzar, and K. P. Pande, IEEE Trans. Electron Devices, 35, 1412 (1988)   DOI   ScienceOn
15 M. S. Jeon and K. Kamisako, Trans. Electr. Electron. Mater. 10, 75 (2009)   과학기술학회마을   DOI   ScienceOn
16 G. B. Park, Trans. Electr. Electron. Mater. 9, 231 (2008)   과학기술학회마을   DOI   ScienceOn