• Title/Summary/Keyword: integral sliding mode control

Search Result 116, Processing Time 0.053 seconds

An Improved Integral Sliding Mode Controller for Regulation Control of Robot Manipulators (로봇 메니플레이터의 레귤레이션 제어를 위한 개선된 적분 슬라이딩 모드 제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.103-113
    • /
    • 2018
  • In this paper, an improved integral variable structure regulation controller is designed by using a special integral sliding surface and a disturbance observer for the improved regulation control of highly nonlinear rigid robot manipulators with prescribed output performance. The sliding surface having the integral state with a special initial condition is employed in this paper to exactly predetermine the ideal sliding trajectory from a given initial condition to the desired reference without any reaching phase. And a continuous sliding mode input using the disturbance observer is also introduced in order to effectively follow the predetermined sliding trajectory within the prescribed accuracy without large computation burden. The performance of the prescribed tracking accuracy to the predetermined sliding trajectory is clearly investigated in detail through the two theorems, together with the closed loop stability. The design of the proposed regulation controller is separated into the performance design and robustness design in each independent link. The usefulness of the algorithm has been demonstrated through simulation studies on the regulation control of a two-link robot under parameter uncertainties and payload variations.

An Improved Continuous Integral Variable Structure Systems with Prescribed Control Performance for Regulation Controls of Uncertain General Linear Systems (불확실 일반 선형 시스템의 레귤레이션 제어를 위한 사전 제어 성능을 갖는 개선된 연속 적분 가변구조 시스템)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1759-1771
    • /
    • 2017
  • In this paper, an improved continuous integral variable structure systems(ICIVSS) with the prescribed control performance is designed for simple regulation controls of uncertain general linear systems. An integral sliding surface with an integral state having a special initial condition is adopted for removing the reaching phase and predetermining the ideal sliding trajectory from a given initial state to the origin in the state space. The ideal sliding dynamics of the integral sliding surface is analytically obtained and the solution of the ideal sliding dynamics can predetermine the ideal sliding trajectory(integral sliding surface) from the given initial state to the origin. Provided that the value of the integral sliding surface is bounded by certain value by means of the continuous input, the norm of the state error to the ideal sliding trajectory is analyzed and obtained in Theorem 1. A corresponding discontinuous control input with the exponential stability is proposed to generate the perfect sliding mode on the every point of the pre-selected sliding surface. For practical applications, the discontinuity of the VSS control input is approximated to be continuous based on the proposed modified fixed boundary layer method. The bounded stability by the continuous input is investigated in Theorem 3. With combining the results of Theorem 1 and Theorem 3, as the prescribed control performance, the pre specification on the error to the ideal sliding trajectory is possible by means of the boundary layer continuous input with the integral sliding surface. The suggested algorithm with the continuous input can provide the effective method to increase the control accuracy within the boundary layer by means of the increase of the $G_1$ gain. Through an illustrative design example and simulation study, the usefulness of the main results is verified.

The Development of Anti-Windup Scheme for Time Delay Control with Switching Action Using Integral Sliding Surface (적분형 슬라이딩 서피스를 이용한 TDCSA(Time Delay Control With Switching Action)의 와인드업 방지를 위한 기법의 개발)

  • Lee, Seong-Uk;Jang, Pyeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1534-1544
    • /
    • 2002
  • The TDCSA(Time Delay Control with Switching Action) method, which consists of Time Delay Control(TDC) and a switching action of sliding mode control(SMC), has been proposed as a promising technique in the robust control area, where the plant has unknown dynamics with parameter variations and substantial disturbances are preset. When TDCSA is applied to the plant with saturation nonlinearity, however, the so-called windup phenomena are observed to arise, causing excessive overshoot and instability. The integral element of TDCSA and the saturation element of a plant cause the windup phenomena. There are two integral effects in TDCSA. One is the integral effect occurred by time delay estimation of TDC. Other is the integral term of an integral sliding surface. In order to solve this problem, we have proposed an anti-windup scheme method for TDCSA. The stability of the overall system has been proved for a class of nonlinear system. Experiment results show that the proposed method overcomes the windup problem of the TDCSA.

Velocity Control of an Electro-hydraulic Servo System with Integral Variable Structure Controller (적분 가변구조제어기를 갖는 전기유압 서보시스템의 속도제어)

  • Huh, J.Y.
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.52-58
    • /
    • 2021
  • The variable structure controller is designed such that in sliding mode, the system moves along the switching plane in the vicinity of the switching plane, thus it is robust because it is not affected by the parameter fluctuations of the plant. However, a controller based on a variable structure may not meet the desired performance when it is commanded to track any input or is exposed to disturbances. This study proposes a sliding mode controller that follows the IVSC (Integral Variable Structure Control) approach with ELO (Extended Luenberger observer) to solve this problem. The proposed sliding mode control is applied to the velocity control of the hydraulic motor. The sliding plane was determined by the pole placement, and the control input was designed to ensure the existence of the sliding mode. The feasibility of modeling and controller are reviewed by comparing with conventional proportional-integral control through computer simulation using MATLAB software and experimenting on the cases of significant plant parameter fluctuations and disturbances.

A Design of Integral Sliding Mode Suspension Controller to Reject the Disturbance Force Acting on the Suspension System in the Magnetically Levitated Train System (자기부상 열차 시스템에서 추진 장치에서 발생하는 부상 간섭력의 영향을 제거하기 위한 적분형 Sliding Mode 부상 제어기 설계)

  • Lee, Jun-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1152-1160
    • /
    • 2007
  • In this paper we deal with a design of integral sliding mode controller to reject the disturbance force acting on the suspension system in the magnetically levitated system which is propelled by the linear induction motor. The control scheme comprises an integral controller which is designed for achieving zero steady-state error under step disturbances, and a sliding mode controller which is designed for enhancing robustness under plant uncertainties. A proper continuous design signal is introduced to overcome the chattering problem. The disturbance force produced by the linear motor is formularized by using a curve fitting of the experimental raw data. Computer simulations show the effectiveness of the designed integral sliding mode controller to reject the disturbance force.

A Variable Structure Point-to-Point Regulation Controller for Uncertain General Linear Systems (불확실 선형 시스템을 위한 적분 가변구조 지점에서 지점으로 레귤레이션 제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.519-525
    • /
    • 2014
  • In this paper, an alternative variable structure controller is designed for the point-to-point regulation control of uncertain general linear plants so that the output of plants can be controlled from an arbitrarily given initial point to an arbitrarily given reference point in the state space. By using the error between the steady state value of the output and an arbitrarily given reference point and those integral, a transformed integral sliding surface is defined, in advance, as the surface from an initial state to an arbitrarily given reference point without the reaching phase problems. A corresponding control input is suggested to satisfy the existence condition of the sliding mode on the preselected transformed integral sliding surface against matched uncertainties and disturbances. Therefore, the output controlled by the proposed controller is completely robust and identical to that of the preselected transformed integral sliding surface. Through an example, the effectiveness of the suggested controller is verified.

Proofs of Utkin's Theorem for MIMO Uncertain Integral Linear Systems

  • Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.255-262
    • /
    • 2014
  • The uncertain integral linear system is the integral-augmented uncertain system to improve the resultant performance. In this note, for a MI(Multi Input) uncertain integral linear case, Utkin's theorem is proved clearly and comparatively. With respect to the two transformations(diagonalizations), the equation of the sliding mode is invariant. By using the results of this note, in the SMC for MIMO uncertain integral linear systems, the existence condition of the sliding mode on the predetermined sliding surface is easily proved. The effectiveness of the main results is verified through an illustrative example and simulation study.

Chattering Alleviation using Integral Sliding Mode Control (ICCAS 2005)

  • Kim, Tae-Won;Kim, Min-Chan;Park, Seung-Kyu;Ahn, Ho-Gyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1621-1623
    • /
    • 2005
  • The input chattering in the sliding mode control (SMC) is alleviated through a low pass filter. When the low pass filter is added to the original system, the overall system including the low pass filter dynamics can not satisfy the matching condition. So the integral SMC is applied for a main controller. A sliding surfaces are designed carefully to make the overall dynamics same with the nominal control system.

  • PDF

A New Robust Integral Variable Structure Controller for Uncertain More Affine Nonlinear Systems with Mismatched Uncertainties (부정합조건 불확실성을 갖는 비선형 시스템을 위한 새로운 강인한 적분 가변 구조 제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1173-1178
    • /
    • 2010
  • In this note, a systematic design of a new robust nonlinear integral variable structure controller based on state dependent nonlinear form is presented for the control of uncertain more affine nonlinear systems with mismatched uncertainties and matched disturbance. After an affine uncertain nonlinear system is represented in the form of state dependent nonlinear system, a systematic design of a new robust nonlinear integral variable structure controller is presented. To be linear in the closed loop resultant dynamics and remove the reaching phase problems, the linear integral sliding surface is suggested. A corresponding control input is proposed to satisfy the closed loop exponential stability and the existence condition of the sliding mode on the linear integral sliding surface, which will be investigated in Theorem 1. Through a design example and simulation studies, the usefulness of the proposed controller is verified.

Design of Adaptive Fuzzy Sliding Mode Controller based on Fuzzy Basis Function Expansion for UFV Depth Control

  • Kim Hyun-Sik;Shin Yong-Ku
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.217-224
    • /
    • 2005
  • Generally, the underwater flight vehicle (UFV) depth control system operates with the following problems: it is a multi-input multi-output (MIMO) system because the UFV contains both pitch and depth angle variables as well as multiple control planes, it requires robustness because of the possibility that it may encounter uncertainties such as parameter variations and disturbances, it requires a continuous control input because the system that has reduced power consumption and acoustic noise is more practical, and further, it has the speed dependency of controller parameters because the control forces of control planes depend on the operating speed. To solve these problems, an adaptive fuzzy sliding mode controller (AFSMC), which is based on the decomposition method using expert knowledge in the UFV depth control and utilizes a fuzzy basis function expansion (FBFE) and a proportional integral augmented sliding signal, is proposed. To verify the performance of the AFSMC, UFV depth control is performed. Simulation results show that the AFSMC solves all problems experienced in the UFV depth control system online.