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Abstract

The uncertain integral linear system is the integral-augmented uncertain system to improve the resultant

performance. In this note, for a MI(Multi Input) uncertain integral linear case, Utkin's theorem is proved

clearly and comparatively. With respect to the two transformations(diagonalizations), the equation of the

sliding mode is invariant. By using the results of this note, in the SMC for MIMO uncertain integral linear

systems, the existence condition of the sliding mode on the predetermined sliding surface is easily proved.

The effectiveness of the main results is verified through an illustrative example and simulation study.
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I. Introduction

Recently the integral action is augmented to the

variable structure system or sliding mode control to

improve the output performance[1]-[12]. Concerning

introduction of an integral action to the VSS

so-called the integral variable structure

system(IVSS), the performance of the zero steady

state error and/or no reaching phase can be

obtained[1]-[12], while it may exists in the digital

implementation of the conventional VSS. For

canonical SISO systems, the output error is

integrated only to improve the steady state

performance against external disturbances in [1] and

[2]. In the cases of Choi and Chang, the sliding

surfaces are integrated itself for control of

multi-input systems[4][7]. In [8], the integral action

as function of the low pass filter is employed to

reduce the chattering in the control input. In [9], the

time varying sliding surfaces are presented to

remove the reaching phase. In [3] and [5], the

integral state with a special initial condition is

augmented to the conventional VSS in order to

completely remove the reaching phase. The

integral-augmented uncertain linear system is called

as the uncertain integral linear system to improve

the resultant performance.

To take the advantages of the sliding mode on

the predetermined sliding surface in the VSS or

SMC, the existence condition of the sliding mode,

⋅
   for the MI(multi input) linear

case is satisfied. Therefore the existence condition

of the sliding mode must be proved. For the linear

MI case, a few control design method was studied,

those are hierarchical control methodology[13][15],

diagonalization methods[13][14][22][23], simplex

algorithm[28], Lyapunov approach[23][29] and etc.

Only the results of the derivative of the Lyapunov

function is negative, i,e.  is obtained when

  . The two methodologies to prove the

existence condition of the sliding mode on the

sliding surface were presented for MI uncertain
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nonlinear systems by Utkin[13]. Those two

methodologies are the control input transformation

and sliding surface transformation. The proof of

Utkin’s theroem is necessary for proving existence

condition of the sliding mode. the But the proof is

not sufficient. DeCarlo, Zak, and Matthews reviewed

and tried to prove Utkin's invariance theorem. But,

the proof is also not clear. The control input

transformation without uncertainties and disturbance

is used by Zak and Hui In [22]. But, they did not

prove for the explicit control input transformation

under uncertainties and disturbance. The sliding

surface transformation was mentioned by Su,

Drakunov, and Ozguner in [29]. In the case of the

MI uncertain integral linear system, the proof of

Utkin’s theorem is necessary to prove the existence

condition of the sliding mode on the predetermined

sliding surface.

In this paper, a proof of Utkin's theorem is

presented for MI uncertain integral linear systems.

The invariance theorem with respect to the two

transformation methods so called the two

diagonalization methods are proved clearly and

comparatively for MI uncertain integral linear

systems. By using the results of this note, in the

SMC for a MIMO uncertain integral linear system,

the existence condition of the sliding mode on the

predetermined sliding surface is easily proved. A

design example and simulation study shows

usefulness of the main results.

II. Main Results of Proofs of Utkin's

Theorem for MI Uncertain Integral

Linear Systems

The invariant theorem of Utkin's for MI systems is

as follows[13][14]:

Theorem 1: The equation of the sliding mode is

invariant with respect to the two nonlinear

transformations, i.e. the control input transformation

and sliding surface transformation:

  ⋅

  ⋅
(1)

for det≠ and det≠ .

The theorem means that the sliding mode equation

is governed by the original (1) if the components of

the controlled vector undergo discontinuity on the

new surface     or the components of the

new control vector   undergo discontinuity on

the already chosen surface    , that is

    ⇔    . Thus the

performances designed in (1) can be guaranteed by

the sliding mode on the new surface     .

For a MI uncertain linear system:

 ∆∆∆ (2)

where ∈ is the state, ∈ is the control

input, ∈ × is the nominal system matrix,

∈ × is the nominal input matrix, ∆ and

∆ are the system matrix uncertainty and input

matrix uncertainty, those are bounded, and ∆
is bounded external disturbance, respectively.

For use later, an integral state for the integral

linear systems is augmented as follows:

 





∞










 

(3)

where for non zero   and   

   
   (4)

Then, the integral sliding surface becomes

    













(5)

For the coefficient matrix of the sliding surface  ,

the following assumptions are made.

Assumption 1:

 has the full rank and its inverse

Assumption 2:

∆ ∆  . ∆ is diagonal and

∆ ≤   

Assumption 3:

∆′  ∆ . ∆′ is diagonal and

∆′ ≤   

The VSS control input is as follows:

 ⋅∆⋅∆⋅ (6)

where  is a constant gain, ∆ ∆  is a

state dependent switching gain, ∆ ∆ is a
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switching gain.

    (7)

∆ 








≥min ∆ 
max∆  ∆

   

≤min ∆ 
min∆  ∆ 

  

     (8)

∆










≥min ∆ 
max∆ 

  

≤min ∆
min∆ 

  

  (9)

where min⋅ means the minimum value function

and max⋅ implies the maximum value function.

2.1 control input transformation[15][17][23]

The control input is transformed as

 ⋅
⋅∆∆  

 


 ⋅∆∆

(10)

Then, the real dynamics of  , i.e. the time

derivative of  is as follows:
 


 ∆ ∆∆
  ∆ ∆∆

∆∆
 ∆∆′

  ∆∆∆  ∆∆
(11)

By (7), the real dynamics of  becomes
 ∆∆ ∆′∆

∆ ∆ ∆
(12)

By (8) and (9), then one can obtain the following

equation

⋅
   (13)

The existence condition of the sliding mode is

proved. The equation of the sliding mode, i.e. the

sliding surface is invariant to the control input

transformation

2.2 sliding surface transformation[15][17][24]

 
 ⋅   

  (14)

The transformation matrix is selected as

  
  . In [14], its proof is not sufficient.

Now, the VSS control input is taken as follows:

⋅∆⋅∆⋅ (15)

where


 

  (16)

∆










≥min ∆ ′
max∆∆  ′ 

  

≤min ∆ ′
min∆∆ ′ 

  

      (17)

∆ 









≥min ∆′
max ∆

 

≤min ∆′
min ∆

 

  (18)

The real dynamics of the sliding surface, i.e. the

time derivative of  becomes
 

  
 

 


 
  ∆  ∆


 ∆ 

 
  ∆∆′


 ∆ 

 
  ∆ ∆′∆

∆ ∆ 
 

 
  

 ∆
∆′ ∆′∆


 ∆ ∆′
(19)

By (16), then the real dynamics of  becomes
 

 ∆∆′ ∆′∆


 ∆ ∆′∆
(20)

In [23], without uncertainty and disturbance, it is

mentioned that the sliding surface transformation

would diagonalize the control coefficient matrix to

the dynamics for  and only the   is

proved when    .

From (20) and by (17) and (18), the following

equation is obtained as

⋅
   (21)

If the sliding mode equation   , then   
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since ≠ . The inverse augment also holds,

therefore the both sliding surfaces are equal i.e.,

    , which completes the proof of Theorem

1.

The sliding mode equation i.e. the sliding surface

   is the same as that of   . To compare

the control inputs,  and  , the form is the same

but the gains of  are multiplied by 
  .

The both methods equivalently diagonalize the

system, so those are called the diagonalization

methods. By using the results of this note, in the

SMC for MIMO uncertain integral linear systems,

the existence condition of the sliding mode on the

predetermined sliding surface is easily proved.

Ⅲ. Design Example and Simulation

Studies

3.1 Plant

Consider a fifth-order system described by the

state equation which is slightly modified from that

in [30]
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 ±    ±
    

 ±   
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(22)

where the nominal parameter  and  , matched

uncertainties ∆ and ∆ , and disturbance ∆
are
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 (23)

3.2 An Example of Integral Case

The integral state is augmented as follows:

 




 (24)

The coefficient of the sliding surface is determined

as




    
    



 and




    
    





(25)

1) control input transformation

 
  



 
 




 




 
 








 
 



∆∆

(26)

Then, the real dynamics of  , i.e. the time

derivative of  is as follows:
 


 ∆∆
 ∆∆∆  ∆∆

(27)

where

∆ ∆   ±
 
 ±



 (28)

Thus, Assumption A1 is satisfied. By letting the

constant gain

 




    
    





(29)

then the real dynamics of  becomes
 ∆∆ ∆∆

∆ ∆∆
(30)

If one takes the switching gain as design

parameters

    i f 
 if  ,

    i f 
 i f  ,     i f 

 i f 
    i f 

 i f  ,
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    if 
 i f  , ∆    if 

 i f 
    if 

 i f  ,     i f 
 i f  ,

    if 
 i f      i f 

 i f  ,

    if 
 i f  , ∆    if 

 i f 

Fig. 1 Five state output responses,  ,  ,  ,  ,

and 

Fig. 2 Two real trajectories and ideal trajectories on

- plane(upper) and - plane(below)

(31)

then one can obtain the following equation

⋅
    (32)

The existence condition of the sliding mode is

proved. The equation of the sliding mode, i.e. the

sliding surface is invariant to the control input

transformation. The simulation is carried out under

0.1[msec] sampling time and with

        initial state, by means of

Fortran language. Fig. 1 shows the five state output

responses,  ,  ,  ,  , and  . Fig. 2 shows the

two real trajectories and ideal trajectories on on -

 plane(upper) and - plane(below). The

controlled system slides from the beginning as

shown in these figures. The two sliding surfaces

and two control inputs are depicted in Fig. 3 and

Fig. 4, respectively.

2) sliding surface transformation

Fig. 3 Two sliding surfaces  (upper) and 

(below)

Fig.4 Two control inputs  (upper) and  (below)

 
 ⋅   

  


 
 





(33)

Now, the VSS control input are taken as follows:

⋅∆⋅∆⋅ (34)

The real dynamics of the sliding surface, i.e. the

time derivative of  becomes
 

  
 

 
  

 ∆
∆′ ∆′∆ ∆
  ∆′∆

(35)

By letting gain
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(36)

then the real dynamics of  becomes

 
 ∆∆′∆′∆


 ∆  ∆′∆

(37)

Fig. 5 Five state output responses,  ,  ,  ,  ,

and 

Fig. 6 Two trajectories and two ideal trajectories on
- plane(upper) and - plane(below)

∆′  ∆ 
± 
 ±



 (38)

Thus, Assumption A2 is satisfied. If one takes

the switching gains as follows

    if 
 i f  ,    i f 

 i f 
    if 

 i f 
    if 

 i f 
    if 

 i f  , ∆    if 
 i f 

    i f 
 i f      i f 

 i f  ,

    i f 
 i f 

    i f 
 i f      i f 

 i f  ,

∆    i f 
 if  (39)

then

Fig. 7 Two sliding surfaces  (upper) and 

(below)

Fig.8 Two control inputs (upper) and (below)

⋅
    (40)

If   , then    . The inverse augment also
holds. The switching gains in (63) can be obtained

also from (28) by multiplying 
  



 
 



 .

The simulation is carried out under 1[msec]

sampling time and with        

initial condition. Fig. 5 shows the five state output

responses,  ,  ,  ,  , and  . Those are almost

identical to Fig. 1 because the sliding surface

    is equal and the continuous gains and

discontinuous gains of the both controls,  and 
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are equal. Fig. 6 shows the two real trajectories

and ideal trajectories on on - plane(upper) and

- plane(below). The controlled system slides

from the beginning as shown in these figures. The

two sliding surfaces and two control inputs are

depicted in Fig. 7 and Fig. 8, respectively.

Ⅳ. Conclusions

In this note, the invariant theorem of Utkin is

rigorously proved for MI uncertain integral linear

systems. The invariance theorem of the two

diagonal methods i.e., the control input

transformation and sliding surface transformation is

proved clearly and comparatively. Therefore, the

equation of the sliding mode, i.e., the sliding surface

is invariant with respect to the two diagonalization

methods. These two methods diagonalize the input

system of the real sliding dynamics of the sliding

surface  or  so that the existence condition of
the sliding mode on the predetermined sliding

surface is easily proved. During the proof of Utkin's

theorem for MI uncertain integral linear systems,

the design rules of both control inputs are proposed.

Through an illustrative example and simulation

study, the effectiveness of the proposed main results

is verified. The same results of the outputs by the

two diagonalization methods are obtained. The

equation of the sliding mode, i.e., the sliding surface

is invariant with respect to the two diagonalization

methods for MI uncertain integral linear systems.

By using the results of this note, in the SMC for a

MIMO uncertain integral linear system, the

existence condition of the sliding mode on the

predetermined sliding surface is easily proved
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